EconPapers    
Economics at your fingertips  
 

Multi-environment robotic transitions through adaptive morphogenesis

Robert Baines, Sree Kalyan Patiballa, Joran Booth, Luis Ramirez, Thomas Sipple, Andonny Garcia, Frank Fish and Rebecca Kramer-Bottiglio ()
Additional contact information
Robert Baines: Yale University
Sree Kalyan Patiballa: Yale University
Joran Booth: Yale University
Luis Ramirez: Yale University
Thomas Sipple: Yale University
Andonny Garcia: Yale University
Frank Fish: West Chester University
Rebecca Kramer-Bottiglio: Yale University

Nature, 2022, vol. 610, issue 7931, 283-289

Abstract: Abstract The current proliferation of mobile robots spans ecological monitoring, warehouse management and extreme environment exploration, to an individual consumer’s home1–4. This expanding frontier of applications requires robots to transit multiple environments, a substantial challenge that traditional robot design strategies have not effectively addressed5,6. For example, biomimetic design—copying an animal’s morphology, propulsion mechanism and gait—constitutes one approach, but it loses the benefits of engineered materials and mechanisms that can be exploited to surpass animal performance7,8. Other approaches add a unique propulsive mechanism for each environment to the same robot body, which can result in energy-inefficient designs9–11. Overall, predominant robot design strategies favour immutable structures and behaviours, resulting in systems incapable of specializing across environments12,13. Here, to achieve specialized multi-environment locomotion through terrestrial, aquatic and the in-between transition zones, we implemented ‘adaptive morphogenesis’, a design strategy in which adaptive robot morphology and behaviours are realized through unified structural and actuation systems. Taking inspiration from terrestrial and aquatic turtles, we built a robot that fuses traditional rigid components and soft materials to radically augment the shape of its limbs and shift its gaits for multi-environment locomotion. The interplay of gait, limb shape and the environmental medium revealed vital parameters that govern the robot’s cost of transport. The results attest that adaptive morphogenesis is a powerful method to enhance the efficiency of mobile robots encountering unstructured, changing environments.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-05188-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:610:y:2022:i:7931:d:10.1038_s41586-022-05188-w

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-05188-w

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:610:y:2022:i:7931:d:10.1038_s41586-022-05188-w