Personalizing exoskeleton assistance while walking in the real world
Patrick Slade,
Mykel J. Kochenderfer,
Scott L. Delp and
Steven H. Collins ()
Additional contact information
Patrick Slade: Stanford University
Mykel J. Kochenderfer: Stanford University
Scott L. Delp: Stanford University
Steven H. Collins: Stanford University
Nature, 2022, vol. 610, issue 7931, 277-282
Abstract:
Abstract Personalized exoskeleton assistance provides users with the largest improvements in walking speed1 and energy economy2–4 but requires lengthy tests under unnatural laboratory conditions. Here we show that exoskeleton optimization can be performed rapidly and under real-world conditions. We designed a portable ankle exoskeleton based on insights from tests with a versatile laboratory testbed. We developed a data-driven method for optimizing exoskeleton assistance outdoors using wearable sensors and found that it was equally effective as laboratory methods, but identified optimal parameters four times faster. We performed real-world optimization using data collected during many short bouts of walking at varying speeds. Assistance optimized during one hour of naturalistic walking in a public setting increased self-selected speed by 9 ± 4% and reduced the energy used to travel a given distance by 17 ± 5% compared with normal shoes. This assistance reduced metabolic energy consumption by 23 ± 8% when participants walked on a treadmill at a standard speed of 1.5 m s−1. Human movements encode information that can be used to personalize assistive devices and enhance performance.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05191-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:610:y:2022:i:7931:d:10.1038_s41586-022-05191-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05191-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().