EconPapers    
Economics at your fingertips  
 

Antibiotic combinations reduce Staphylococcus aureus clearance

Viktória Lázár, Olga Snitser, Daniel Barkan and Roy Kishony ()
Additional contact information
Viktória Lázár: Technion–Israel Institute of Technology
Olga Snitser: Technion–Israel Institute of Technology
Daniel Barkan: The Hebrew University of Jerusalem
Roy Kishony: Technion–Israel Institute of Technology

Nature, 2022, vol. 610, issue 7932, 540-546

Abstract: Abstract The spread of antibiotic resistance is attracting increased attention to combination-based treatments. Although drug combinations have been studied extensively for their effects on bacterial growth1–11, much less is known about their effects on bacterial long-term clearance, especially at cidal, clinically relevant concentrations12–14. Here, using en masse microplating and automated image analysis, we systematically quantify Staphylococcus aureus survival during prolonged exposure to pairwise and higher-order cidal drug combinations. By quantifying growth inhibition, early killing and longer-term population clearance by all pairs of 14 antibiotics, we find that clearance interactions are qualitatively different, often showing reciprocal suppression whereby the efficacy of the drug mixture is weaker than any of the individual drugs alone. Furthermore, in contrast to growth inhibition6–10 and early killing, clearance efficacy decreases rather than increases as more drugs are added. However, specific drugs targeting non-growing persisters15–17 circumvent these suppressive effects. Competition experiments show that reciprocal suppressive drug combinations select against resistance to any of the individual drugs, even counteracting methicillin-resistant Staphylococcus aureus both in vitro and in a Galleria mellonella larva model. As a consequence, adding a β-lactamase inhibitor that is commonly used to potentiate treatment against β-lactam-resistant strains can reduce rather than increase treatment efficacy. Together, these results underscore the importance of systematic mapping the long-term clearance efficacy of drug combinations for designing more-effective, resistance-proof multidrug regimes.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-05260-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:610:y:2022:i:7932:d:10.1038_s41586-022-05260-5

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-05260-5

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:610:y:2022:i:7932:d:10.1038_s41586-022-05260-5