An optical atomic clock based on a highly charged ion
Steven A. King,
Lukas J. Spieß (),
Peter Micke,
Alexander Wilzewski,
Tobias Leopold,
Erik Benkler,
Richard Lange,
Nils Huntemann,
Andrey Surzhykov,
Vladimir A. Yerokhin,
José R. Crespo López-Urrutia and
Piet O. Schmidt ()
Additional contact information
Steven A. King: Physikalisch-Technische Bundesanstalt
Lukas J. Spieß: Physikalisch-Technische Bundesanstalt
Peter Micke: Physikalisch-Technische Bundesanstalt
Alexander Wilzewski: Physikalisch-Technische Bundesanstalt
Tobias Leopold: Physikalisch-Technische Bundesanstalt
Erik Benkler: Physikalisch-Technische Bundesanstalt
Richard Lange: Physikalisch-Technische Bundesanstalt
Nils Huntemann: Physikalisch-Technische Bundesanstalt
Andrey Surzhykov: Physikalisch-Technische Bundesanstalt
Vladimir A. Yerokhin: Physikalisch-Technische Bundesanstalt
José R. Crespo López-Urrutia: Max-Planck-Institut für Kernphysik
Piet O. Schmidt: Physikalisch-Technische Bundesanstalt
Nature, 2022, vol. 611, issue 7934, 43-47
Abstract:
Abstract Optical atomic clocks are the most accurate measurement devices ever constructed and have found many applications in fundamental science and technology1–3. The use of highly charged ions (HCI) as a new class of references for highest-accuracy clocks and precision tests of fundamental physics4–11 has long been motivated by their extreme atomic properties and reduced sensitivity to perturbations from external electric and magnetic fields compared with singly charged ions or neutral atoms. Here we present the realization of this new class of clocks, based on an optical magnetic-dipole transition in Ar13+. Its comprehensively evaluated systematic frequency uncertainty of 2.2 × 10−17 is comparable with that of many optical clocks in operation. From clock comparisons, we improve by eight and nine orders of magnitude on the uncertainties for the absolute transition frequency12 and isotope shift (40Ar versus 36Ar) (ref. 13), respectively. These measurements allow us to investigate the largely unexplored quantum electrodynamic (QED) nuclear recoil, presented as part of improved calculations of the isotope shift, which reduce the uncertainty of previous theory14 by a factor of three. This work establishes forbidden optical transitions in HCI as references for cutting-edge optical clocks and future high-sensitivity searches for physics beyond the standard model.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05245-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:611:y:2022:i:7934:d:10.1038_s41586-022-05245-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05245-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().