Bending forces and nucleotide state jointly regulate F-actin structure
Matthew J. Reynolds,
Carla Hachicho,
Ayala G. Carl,
Rui Gong and
Gregory M. Alushin ()
Additional contact information
Matthew J. Reynolds: The Rockefeller University
Carla Hachicho: The Rockefeller University
Ayala G. Carl: The Rockefeller University
Rui Gong: The Rockefeller University
Gregory M. Alushin: The Rockefeller University
Nature, 2022, vol. 611, issue 7935, 380-386
Abstract:
Abstract ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation1–3. In turn, force4,5 and actin filament (F-actin) nucleotide state6 regulate actin dynamics by tuning F-actin’s engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP–F-actin and ADP-Pi–F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP–F-actin and ADP-Pi–F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05366-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:611:y:2022:i:7935:d:10.1038_s41586-022-05366-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05366-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().