EconPapers    
Economics at your fingertips  
 

Fast charging of energy-dense lithium-ion batteries

Chao-Yang Wang (), Teng Liu, Xiao-Guang Yang, Shanhai Ge, Nathaniel V. Stanley, Eric S. Rountree, Yongjun Leng and Brian D. McCarthy ()
Additional contact information
Chao-Yang Wang: Pennsylvania State University
Teng Liu: Pennsylvania State University
Xiao-Guang Yang: Pennsylvania State University
Shanhai Ge: Pennsylvania State University
Nathaniel V. Stanley: EC Power
Eric S. Rountree: EC Power
Yongjun Leng: Pennsylvania State University
Brian D. McCarthy: EC Power

Nature, 2022, vol. 611, issue 7936, 485-490

Abstract: Abstract Lithium-ion batteries with nickel-rich layered oxide cathodes and graphite anodes have reached specific energies of 250–300 Wh kg−1 (refs. 1,2), and it is now possible to build a 90 kWh electric vehicle (EV) pack with a 300-mile cruise range. Unfortunately, using such massive batteries to alleviate range anxiety is ineffective for mainstream EV adoption owing to the limited raw resource supply and prohibitively high cost. Ten-minute fast charging enables downsizing of EV batteries for both affordability and sustainability, without causing range anxiety. However, fast charging of energy-dense batteries (more than 250 Wh kg−1 or higher than 4 mAh cm−2) remains a great challenge3,4. Here we combine a material-agnostic approach based on asymmetric temperature modulation with a thermally stable dual-salt electrolyte to achieve charging of a 265 Wh kg−1 battery to 75% (or 70%) state of charge in 12 (or 11) minutes for more than 900 (or 2,000) cycles. This is equivalent to a half million mile range in which every charge is a fast charge. Further, we build a digital twin of such a battery pack to assess its cooling and safety and demonstrate that thermally modulated 4C charging only requires air convection. This offers a compact and intrinsically safe route to cell-to-pack development. The rapid thermal modulation method to yield highly active electrochemical interfaces only during fast charging has important potential to realize both stability and fast charging of next-generation materials, including anodes like silicon and lithium metal.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.nature.com/articles/s41586-022-05281-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05281-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-05281-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05281-0