Integrated femtosecond pulse generator on thin-film lithium niobate
Mengjie Yu,
David Barton,
Rebecca Cheng,
Christian Reimer,
Prashanta Kharel,
Lingyan He,
Linbo Shao,
Di Zhu,
Yaowen Hu,
Hannah R. Grant,
Leif Johansson,
Yoshitomo Okawachi,
Alexander L. Gaeta,
Mian Zhang and
Marko Lončar ()
Additional contact information
Mengjie Yu: Harvard University
David Barton: Harvard University
Rebecca Cheng: Harvard University
Christian Reimer: HyperLight
Prashanta Kharel: HyperLight
Lingyan He: HyperLight
Linbo Shao: Harvard University
Di Zhu: Harvard University
Yaowen Hu: Harvard University
Hannah R. Grant: Freedom Photonics
Leif Johansson: Freedom Photonics
Yoshitomo Okawachi: Columbia University
Alexander L. Gaeta: Columbia University
Mian Zhang: HyperLight
Marko Lončar: Harvard University
Nature, 2022, vol. 612, issue 7939, 252-258
Abstract:
Abstract Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14–17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05345-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05345-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05345-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().