A shared accretion instability for black holes and neutron stars
F. M. Vincentelli (),
J. Neilsen,
A. J. Tetarenko,
Y. Cavecchi,
N. Castro Segura,
S. Palacio,
J. Eijnden,
G. Vasilopoulos,
D. Altamirano,
M. Armas Padilla,
C. D. Bailyn,
T. Belloni,
D. J. K. Buisson,
V. A. Cúneo,
N. Degenaar,
C. Knigge,
K. S. Long,
F. Jiménez-Ibarra,
J. Milburn,
T. Muñoz Darias,
M. Özbey Arabacı,
R. Remillard and
T. Russell
Additional contact information
F. M. Vincentelli: Instituto de Astrofísica de Canarias
J. Neilsen: Villanova University
A. J. Tetarenko: Texas Tech University
Y. Cavecchi: Universidad Nacional Autónoma de México
N. Castro Segura: University of Southampton
S. Palacio: Chalmers University of Technology
J. Eijnden: University of Oxford
G. Vasilopoulos: Yale University
D. Altamirano: University of Southampton
M. Armas Padilla: Instituto de Astrofísica de Canarias
C. D. Bailyn: Yale University
T. Belloni: INAF - Osservatorio Astronomico di Brera
D. J. K. Buisson: University of Southampton
V. A. Cúneo: Instituto de Astrofísica de Canarias
N. Degenaar: University of Amsterdam
C. Knigge: University of Southampton
K. S. Long: Space Telescope Science Institute
F. Jiménez-Ibarra: Instituto de Astrofísica de Canarias
J. Milburn: California Institute of Technology
T. Muñoz Darias: Instituto de Astrofísica de Canarias
M. Özbey Arabacı: University of Southampton
R. Remillard: Massachusetts Institute of Technology
T. Russell: INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica
Nature, 2023, vol. 615, issue 7950, 45-49
Abstract:
Abstract Accretion disks around compact objects are expected to enter an unstable phase at high luminosity1. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales2. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole3–5. Although there are hints of these cycles in a few isolated cases6–10, their apparent absence in the variable emission of most bright accreting neutron stars and black holes has been a continuing puzzle11. Here we report the presence of the same multiwavelength instability around an accreting neutron star. Moreover, we show that the variability across the electromagnetic spectrum—from radio to X-ray—of both black holes and neutron stars at high accretion rates can be explained consistently if the accretion disks are unstable, producing relativistic ejections during transitions that deplete or refill the inner disk. Such a new association allows us to identify the main physical components responsible for the fast multiwavelength variability of highly accreting compact objects.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-022-05648-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:615:y:2023:i:7950:d:10.1038_s41586-022-05648-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-022-05648-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().