EconPapers    
Economics at your fingertips  
 

Structure of the human DICER–pre-miRNA complex in a dicing state

Young-Yoon Lee, Hansol Lee, Haedong Kim, V. Narry Kim () and Soung-Hun Roh ()
Additional contact information
Young-Yoon Lee: Institute for Basic Science (IBS)
Hansol Lee: Seoul National University
Haedong Kim: Institute for Basic Science (IBS)
V. Narry Kim: Institute for Basic Science (IBS)
Soung-Hun Roh: Seoul National University

Nature, 2023, vol. 615, issue 7951, 331-338

Abstract: Abstract Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs—unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified ‘GYM motif’3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5′ end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5′ terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5′ pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-05723-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05723-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-05723-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05723-3