Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater
Qian Li,
Matthew H. England (),
Andrew McC. Hogg,
Stephen R. Rintoul and
Adele K. Morrison
Additional contact information
Qian Li: Massachusetts Institute of Technology
Matthew H. England: University of New South Wales
Andrew McC. Hogg: Australian National University
Stephen R. Rintoul: CSIRO Oceans & Atmosphere
Adele K. Morrison: Australian National University
Nature, 2023, vol. 615, issue 7954, 841-847
Abstract:
Abstract The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2–4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean’s overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5–7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean–sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-05762-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:615:y:2023:i:7954:d:10.1038_s41586-023-05762-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-05762-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().