EconPapers    
Economics at your fingertips  
 

Earth shaped by primordial H2 atmospheres

Edward D. Young (), Anat Shahar and Hilke E. Schlichting
Additional contact information
Edward D. Young: University of California Los Angeles
Anat Shahar: Earth and Planets Laboratory
Hilke E. Schlichting: University of California Los Angeles

Nature, 2023, vol. 616, issue 7956, 306-311

Abstract: Abstract Earth’s water, intrinsic oxidation state and metal core density are fundamental chemical features of our planet. Studies of exoplanets provide a useful context for elucidating the source of these chemical traits. Planet formation and evolution models demonstrate that rocky exoplanets commonly formed with hydrogen-rich envelopes that were lost over time1. These findings suggest that Earth may also have formed from bodies with hydrogen-rich primary atmospheres. Here we use a self-consistent thermodynamic model to show that Earth’s water, core density and overall oxidation state can all be sourced to equilibrium between hydrogen-rich primary atmospheres and underlying magma oceans in its progenitor planetary embryos. Water is produced from dry starting materials resembling enstatite chondrites as oxygen from magma oceans reacts with hydrogen. Hydrogen derived from the atmosphere enters the magma ocean and eventually the metal core at equilibrium, causing metal density deficits matching that of Earth. Oxidation of the silicate rocks from solar-like to Earth-like oxygen fugacities also ensues as silicon, along with hydrogen and oxygen, alloys with iron in the cores. Reaction with hydrogen atmospheres and metal–silicate equilibrium thus provides a simple explanation for fundamental features of Earth’s geochemistry that is consistent with rocky planet formation across the Galaxy.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-05823-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:616:y:2023:i:7956:d:10.1038_s41586-023-05823-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-05823-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:616:y:2023:i:7956:d:10.1038_s41586-023-05823-0