Separating single- from multi-particle dynamics in nonlinear spectroscopy
Pavel Malý (),
Julian Lüttig,
Peter A. Rose,
Arthur Turkin,
Christoph Lambert,
Jacob J. Krich () and
Tobias Brixner ()
Additional contact information
Pavel Malý: Universität Würzburg
Julian Lüttig: Universität Würzburg
Peter A. Rose: University of Ottawa
Arthur Turkin: Universität Würzburg
Christoph Lambert: Universität Würzburg
Jacob J. Krich: University of Ottawa
Tobias Brixner: Universität Würzburg
Nature, 2023, vol. 616, issue 7956, 280-287
Abstract:
Abstract Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy1 is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes2,3, excitons4–6, plasmons7, polaritons8 or phonons9. However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system4,10. Here, we show that transient absorption—the most commonly used nonlinear spectroscopy—with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers11,12 and, contrary to common assumption6,13, we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics14,15. As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics7, Auger recombination2 and exciton correlations in quantum dots5,16,17, singlet fission18, exciton interactions in two-dimensional materials19 and in molecules20,21, carrier multiplication22, multiphonon scattering9 or polariton–polariton interaction8.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-05846-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:616:y:2023:i:7956:d:10.1038_s41586-023-05846-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-05846-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().