Ångström-resolution fluorescence microscopy
Susanne C. M. Reinhardt,
Luciano A. Masullo,
Isabelle Baudrexel,
Philipp R. Steen,
Rafal Kowalewski,
Alexandra S. Eklund,
Sebastian Strauss,
Eduard M. Unterauer,
Thomas Schlichthaerle,
Maximilian T. Strauss,
Christian Klein and
Ralf Jungmann ()
Additional contact information
Susanne C. M. Reinhardt: Max Planck Institute of Biochemistry
Luciano A. Masullo: Max Planck Institute of Biochemistry
Isabelle Baudrexel: Max Planck Institute of Biochemistry
Philipp R. Steen: Max Planck Institute of Biochemistry
Rafal Kowalewski: Max Planck Institute of Biochemistry
Alexandra S. Eklund: Max Planck Institute of Biochemistry
Sebastian Strauss: Max Planck Institute of Biochemistry
Eduard M. Unterauer: Max Planck Institute of Biochemistry
Thomas Schlichthaerle: Max Planck Institute of Biochemistry
Maximilian T. Strauss: Max Planck Institute of Biochemistry
Christian Klein: Ludwig Maximilian University
Ralf Jungmann: Max Planck Institute of Biochemistry
Nature, 2023, vol. 617, issue 7962, 711-716
Abstract:
Abstract Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1–6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7–14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-05925-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:617:y:2023:i:7962:d:10.1038_s41586-023-05925-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-05925-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().