EconPapers    
Economics at your fingertips  
 

Observing the onset of pressure-driven K-shell delocalization

T. Döppner (), M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer and D. O. Gericke
Additional contact information
T. Döppner: Lawrence Livermore National Laboratory
M. Bethkenhagen: University of Rostock
D. Kraus: University of Rostock
P. Neumayer: GSI Helmholtz-Zentrum für Schwerionenforschung
D. A. Chapman: First Light Fusion Ltd
B. Bachmann: Lawrence Livermore National Laboratory
R. A. Baggott: Imperial College London
M. P. Böhme: Helmholtz-Zentrum Dresden-Rossendorf
L. Divol: Lawrence Livermore National Laboratory
R. W. Falcone: University of California Berkeley
L. B. Fletcher: SLAC National Accelerator Laboratory
O. L. Landen: Lawrence Livermore National Laboratory
M. J. MacDonald: Lawrence Livermore National Laboratory
A. M. Saunders: Lawrence Livermore National Laboratory
M. Schörner: University of Rostock
P. A. Sterne: Lawrence Livermore National Laboratory
J. Vorberger: Helmholtz-Zentrum Dresden-Rossendorf
B. B. L. Witte: University of Rostock
A. Yi: Los Alamos National Laboratory
R. Redmer: University of Rostock
S. H. Glenzer: SLAC National Accelerator Laboratory
D. O. Gericke: University of Warwick

Nature, 2023, vol. 618, issue 7964, 270-275

Abstract: Abstract The gravitational pressure in many astrophysical objects exceeds one gigabar (one billion atmospheres)1–3, creating extreme conditions where the distance between nuclei approaches the size of the K shell. This close proximity modifies these tightly bound states and, above a certain pressure, drives them into a delocalized state4. Both processes substantially affect the equation of state and radiation transport and, therefore, the structure and evolution of these objects. Still, our understanding of this transition is far from satisfactory and experimental data are sparse. Here we report on experiments that create and diagnose matter at pressures exceeding three gigabars at the National Ignition Facility5 where 184 laser beams imploded a beryllium shell. Bright X-ray flashes enable precision radiography and X-ray Thomson scattering that reveal both the macroscopic conditions and the microscopic states. The data show clear signs of quantum-degenerate electrons in states reaching 30 times compression, and a temperature of around two million kelvins. At the most extreme conditions, we observe strongly reduced elastic scattering, which mainly originates from K-shell electrons. We attribute this reduction to the onset of delocalization of the remaining K-shell electron. With this interpretation, the ion charge inferred from the scattering data agrees well with ab initio simulations, but it is significantly higher than widely used analytical models predict6.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-05996-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:618:y:2023:i:7964:d:10.1038_s41586-023-05996-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-05996-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:618:y:2023:i:7964:d:10.1038_s41586-023-05996-8