Genome expansion by a CRISPR trimmer-integrase
Joy Y. Wang,
Owen T. Tuck,
Petr Skopintsev,
Katarzyna M. Soczek,
Gary Li,
Basem Al-Shayeb,
Julia Zhou and
Jennifer A. Doudna ()
Additional contact information
Joy Y. Wang: University of California
Owen T. Tuck: University of California
Petr Skopintsev: University of California
Katarzyna M. Soczek: University of California
Gary Li: University of California
Basem Al-Shayeb: University of California
Julia Zhou: University of California
Jennifer A. Doudna: University of California
Nature, 2023, vol. 618, issue 7966, 855-861
Abstract:
Abstract CRISPR–Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1–Cas2 integrase is necessary but not sufficient2–5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR–Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1–Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10 exonucleases for faithful acquisition of new CRISPR immune sequences.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06178-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:618:y:2023:i:7966:d:10.1038_s41586-023-06178-2
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06178-2
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().