EconPapers    
Economics at your fingertips  
 

Detection of a pair density wave state in UTe2

Qiangqiang Gu, Joseph P. Carroll, Shuqiu Wang (), Sheng Ran, Christopher Broyles, Hasan Siddiquee, Nicholas P. Butch, Shanta R. Saha, Johnpierre Paglione, J. C. Séamus Davis () and Xiaolong Liu ()
Additional contact information
Qiangqiang Gu: Cornell University
Joseph P. Carroll: Cornell University
Shuqiu Wang: Cornell University
Sheng Ran: Washington University in St. Louis
Christopher Broyles: Washington University in St. Louis
Hasan Siddiquee: Washington University in St. Louis
Nicholas P. Butch: University of Maryland
Shanta R. Saha: University of Maryland
Johnpierre Paglione: University of Maryland
J. C. Séamus Davis: Cornell University
Xiaolong Liu: Cornell University

Nature, 2023, vol. 618, issue 7967, 921-927

Abstract: Abstract Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1–11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13. Moreover, intertwined14,15 density waves of spin (SDW), charge (CDW) and pair (PDW) may interpose, with the latter exhibiting spatially modulating14,15 superconductive order parameter Δ(r), electron-pair density16–19 and pairing energy gap17,20–23. Hence, the newly discovered CDW state24 in UTe2 motivates the prospect that a PDW state may exist in this material24,25. To search for it, we visualize the pairing energy gap with μeV-scale energy resolution using superconductive scanning tunnelling microscopy (STM) tips26–31. We detect three PDWs, each with peak-to-peak gap modulations of around 10 μeV and at incommensurate wavevectors Pi=1,2,3 that are indistinguishable from the wavevectors Qi=1,2,3 of the prevenient24 CDW. Concurrent visualization of the UTe2 superconductive PDWs and the non-superconductive CDWs shows that every Pi:Qi pair exhibits a relative spatial phase δϕ ≈ π. From these observations, and given UTe2 as a spin-triplet superconductor12, this PDW state should be a spin-triplet PDW24,25. Although such states do exist32 in superfluid 3He, for superconductors, they are unprecedented.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-05919-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:618:y:2023:i:7967:d:10.1038_s41586-023-05919-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-05919-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:618:y:2023:i:7967:d:10.1038_s41586-023-05919-7