EconPapers    
Economics at your fingertips  
 

Photocatalytic phosphine-mediated water activation for radical hydrogenation

Jingjing Zhang, Christian Mück-Lichtenfeld and Armido Studer ()
Additional contact information
Jingjing Zhang: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität
Christian Mück-Lichtenfeld: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität
Armido Studer: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität

Nature, 2023, vol. 619, issue 7970, 506-513

Abstract: Abstract The chemical activation of water would allow this earth-abundant resource to be transferred into value-added compounds, and is a topic of keen interest in energy research1,2. Here, we demonstrate water activation with a photocatalytic phosphine-mediated radical process under mild conditions. This reaction generates a metal-free PR3–H2O radical cation intermediate, in which both hydrogen atoms are used in the subsequent chemical transformation through sequential heterolytic (H+) and homolytic (H•) cleavage of the two O–H bonds. The PR3–OH radical intermediate provides an ideal platform that mimics the reactivity of a ‘free’ hydrogen atom, and which can be directly transferred to closed-shell π systems, such as activated alkenes, unactivated alkenes, naphthalenes and quinoline derivatives. The resulting H adduct C radicals are eventually reduced by a thiol co-catalyst, leading to overall transfer hydrogenation of the π system, with the two H atoms of water ending up in the product. The thermodynamic driving force is the strong P=O bond formed in the phosphine oxide by-product. Experimental mechanistic studies and density functional theory calculations support the hydrogen atom transfer of the PR3–OH intermediate as a key step in the radical hydrogenation process.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06141-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06141-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06141-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06141-1