EconPapers    
Economics at your fingertips  
 

Hydration solids

Steven G. Harrellson, Michael S. DeLay, Xi Chen, Ahmet-Hamdi Cavusoglu, Jonathan Dworkin, Howard A. Stone and Ozgur Sahin ()
Additional contact information
Steven G. Harrellson: Columbia University
Michael S. DeLay: Columbia University
Xi Chen: Columbia University
Ahmet-Hamdi Cavusoglu: Columbia University
Jonathan Dworkin: Columbia University
Howard A. Stone: Princeton University
Ozgur Sahin: Columbia University

Nature, 2023, vol. 619, issue 7970, 500-505

Abstract: Abstract Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth’s biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2–5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8–13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16–18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can—through the hydration force—control macroscopic properties and give rise to a ‘hydration solid’ with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06144-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06144-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06144-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06144-y