EconPapers    
Economics at your fingertips  
 

Water in the terrestrial planet-forming zone of the PDS 70 disk

G. Perotti (), V. Christiaens, Th. Henning, B. Tabone, L. B. F. M. Waters, I. Kamp, G. Olofsson, S. L. Grant, D. Gasman, J. Bouwman, M. Samland, R. Franceschi, E. F. van Dishoeck, K. Schwarz, M. Güdel, P.-O. Lagage, T. P. Ray, B. Vandenbussche, A. Abergel, O. Absil, A. M. Arabhavi, I. Argyriou, D. Barrado, A. Boccaletti, A. Caratti o Garatti, V. Geers, A. M. Glauser, K. Justannont, F. Lahuis, M. Mueller, C. Nehmé, E. Pantin, S. Scheithauer, C. Waelkens, R. Guadarrama, H. Jang, J. Kanwar, M. Morales-Calderón, N. Pawellek, D. Rodgers-Lee, J. Schreiber, L. Colina, T. R. Greve, G. Östlin and G. Wright
Additional contact information
G. Perotti: Max Planck Institute for Astronomy
V. Christiaens: Université de Liège
Th. Henning: Max Planck Institute for Astronomy
B. Tabone: Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale
L. B. F. M. Waters: Radboud University
I. Kamp: Rijksuniversiteit Groningen
G. Olofsson: Stockholm University, AlbaNova University Center
S. L. Grant: Max-Planck Institut für Extraterrestrische Physik (MPE)
D. Gasman: KU Leuven
J. Bouwman: Max Planck Institute for Astronomy
M. Samland: Max Planck Institute for Astronomy
R. Franceschi: Max Planck Institute for Astronomy
E. F. van Dishoeck: Max-Planck Institut für Extraterrestrische Physik (MPE)
K. Schwarz: Max Planck Institute for Astronomy
M. Güdel: Max Planck Institute for Astronomy
P.-O. Lagage: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
T. P. Ray: Dublin Institute for Advanced Studies
B. Vandenbussche: KU Leuven
A. Abergel: Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale
O. Absil: Université de Liège
A. M. Arabhavi: Rijksuniversiteit Groningen
I. Argyriou: KU Leuven
D. Barrado: CSIC-INTA
A. Boccaletti: Université PSL, CNRS, Sorbonne Université, Université de Paris
A. Caratti o Garatti: Dublin Institute for Advanced Studies
V. Geers: Royal Observatory Edinburgh
A. M. Glauser: ETH Zürich, Institute for Particle Physics and Astrophysics
K. Justannont: Chalmers University of Technology, Onsala Space Observatory
F. Lahuis: SRON Netherlands Institute for Space Research
M. Mueller: Rijksuniversiteit Groningen
C. Nehmé: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
E. Pantin: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
S. Scheithauer: Max Planck Institute for Astronomy
C. Waelkens: KU Leuven
R. Guadarrama: University of Vienna
H. Jang: Radboud University
J. Kanwar: Rijksuniversiteit Groningen
M. Morales-Calderón: CSIC-INTA
N. Pawellek: University of Vienna
D. Rodgers-Lee: Dublin Institute for Advanced Studies
J. Schreiber: Max Planck Institute for Astronomy
L. Colina: Centro de Astrobiología (CAB, CSIC-INTA), Carretera de Ajalvir
T. R. Greve: Technical University of Denmark
G. Östlin: Stockholm University
G. Wright: Royal Observatory Edinburgh

Nature, 2023, vol. 620, issue 7974, 516-520

Abstract: Abstract Terrestrial and sub-Neptune planets are expected to form in the inner (less than 10 au) regions of protoplanetary disks1. Water plays a key role in their formation2–4, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk5,6. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks7, similar to PDS 70, the first system with direct confirmation of protoplanet presence8,9. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (approximately 54 au) planet-carved gap separating an inner and outer disk10,11. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2 and/or OH, and survival through water self-shielding5. This is also supported by the presence of CO2 emission, another molecule sensitive to ultraviolet photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir12. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06317-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:620:y:2023:i:7974:d:10.1038_s41586-023-06317-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06317-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:620:y:2023:i:7974:d:10.1038_s41586-023-06317-9