EconPapers    
Economics at your fingertips  
 

A global rise in alluvial mining increases sediment load in tropical rivers

Evan N. Dethier (), Miles Silman, Jimena Díaz Leiva, Sarra Alqahtani, Luis E. Fernandez, Paúl Pauca, Seda Çamalan, Peter Tomhave, Francis J. Magilligan, Carl E. Renshaw and David A. Lutz
Additional contact information
Evan N. Dethier: Dartmouth College
Miles Silman: Wake Forest University
Jimena Díaz Leiva: Center for Environmental Health
Sarra Alqahtani: Wake Forest University
Luis E. Fernandez: Wake Forest University
Paúl Pauca: Wake Forest University
Seda Çamalan: Wake Forest University
Peter Tomhave: Bowdoin College
Francis J. Magilligan: Dartmouth College
Carl E. Renshaw: Dartmouth College
David A. Lutz: Dartmouth College

Nature, 2023, vol. 620, issue 7975, 787-793

Abstract: Abstract Increasing gold and mineral mining activity in rivers across the global tropics has degraded ecosystems and threatened human health1,2. Such river mineral mining involves intensive excavation and sediment processing in river corridors, altering river form and releasing excess sediment downstream2. Increased suspended sediment loads can reduce water clarity and cause siltation to levels that may result in disease and mortality in fish3,4, poor water quality5 and damage to human infrastructure6. Although river mining has been investigated at local scales, no global synthesis of its physical footprint and impacts on hydrologic systems exists, leaving its full environmental consequences unknown. We assemble and analyse a 37-year satellite database showing pervasive, increasing river mineral mining worldwide. We identify 396 mining districts in 49 countries, concentrated in tropical waterways that are almost universally altered by mining-derived sediment. Of 173 mining-affected rivers, 80% have suspended sediment concentrations (SSCs) more than double pre-mining levels. In 30 countries in which mining affects large (>50 m wide) rivers, 23 ± 19% of large river length is altered by mining-derived sediment, a globe-spanning effect representing 35,000 river kilometres, 6% (±1% s.e.) of all large tropical river reaches. Our findings highlight the ubiquity and intensity of mining-associated degradation in tropical river systems.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06309-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:620:y:2023:i:7975:d:10.1038_s41586-023-06309-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06309-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:620:y:2023:i:7975:d:10.1038_s41586-023-06309-9