EconPapers    
Economics at your fingertips  
 

First observation of 28O

Y. Kondo (), N. L. Achouri, H. Al Falou, L. Atar, T. Aumann, H. Baba, K. Boretzky, C. Caesar, D. Calvet, H. Chae, N. Chiga, A. Corsi, F. Delaunay, A. Delbart, Q. Deshayes, Zs. Dombrádi, C. A. Douma, A. Ekström, Z. Elekes, C. Forssén, I. Gašparić, J.-M. Gheller, J. Gibelin, A. Gillibert, G. Hagen, M. N. Harakeh, A. Hirayama, C. R. Hoffman, M. Holl, A. Horvat, Á. Horváth, J. W. Hwang, T. Isobe, W. G. Jiang, J. Kahlbow, N. Kalantar-Nayestanaki, S. Kawase, S. Kim, K. Kisamori, T. Kobayashi, D. Körper, S. Koyama, I. Kuti, V. Lapoux, S. Lindberg, F. M. Marqués, S. Masuoka, J. Mayer, K. Miki, T. Murakami, M. Najafi, T. Nakamura, K. Nakano, N. Nakatsuka, T. Nilsson, A. Obertelli, K. Ogata, F. Oliveira Santos, N. A. Orr, H. Otsu, T. Otsuka, T. Ozaki, V. Panin, T. Papenbrock, S. Paschalis, A. Revel, D. Rossi, A. T. Saito, T. Y. Saito, M. Sasano, H. Sato, Y. Satou, H. Scheit, F. Schindler, P. Schrock, M. Shikata, N. Shimizu, Y. Shimizu, H. Simon, D. Sohler, O. Sorlin, L. Stuhl, Z. H. Sun, S. Takeuchi, M. Tanaka, M. Thoennessen, H. Törnqvist, Y. Togano, T. Tomai, J. Tscheuschner, J. Tsubota, N. Tsunoda, T. Uesaka, Y. Utsuno, I. Vernon, H. Wang, Z. Yang, M. Yasuda, K. Yoneda and S. Yoshida
Additional contact information
Y. Kondo: Tokyo Institute of Technology
N. L. Achouri: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
H. Al Falou: Lebanese University
L. Atar: Technische Universität Darmstadt
T. Aumann: Technische Universität Darmstadt
H. Baba: RIKEN Nishina Center
K. Boretzky: GSI Helmholtzzentrum für Schwerionenforschung
C. Caesar: Technische Universität Darmstadt
D. Calvet: Université Paris-Saclay
H. Chae: Institute for Basic Science
N. Chiga: RIKEN Nishina Center
A. Corsi: Université Paris-Saclay
F. Delaunay: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
A. Delbart: Université Paris-Saclay
Q. Deshayes: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
Zs. Dombrádi: Atomki
C. A. Douma: University of Groningen
A. Ekström: Chalmers Tekniska Högskola
Z. Elekes: Atomki
C. Forssén: Chalmers Tekniska Högskola
I. Gašparić: RIKEN Nishina Center
J.-M. Gheller: Université Paris-Saclay
J. Gibelin: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
A. Gillibert: Université Paris-Saclay
G. Hagen: Oak Ridge National Laboratory
M. N. Harakeh: GSI Helmholtzzentrum für Schwerionenforschung
A. Hirayama: Tokyo Institute of Technology
C. R. Hoffman: Argonne National Laboratory
M. Holl: Technische Universität Darmstadt
A. Horvat: GSI Helmholtzzentrum für Schwerionenforschung
Á. Horváth: Eötvös Loránd University
J. W. Hwang: Institute for Basic Science
T. Isobe: RIKEN Nishina Center
W. G. Jiang: Chalmers Tekniska Högskola
J. Kahlbow: RIKEN Nishina Center
N. Kalantar-Nayestanaki: University of Groningen
S. Kawase: Kyushu University
S. Kim: Institute for Basic Science
K. Kisamori: RIKEN Nishina Center
T. Kobayashi: Tohoku University
D. Körper: GSI Helmholtzzentrum für Schwerionenforschung
S. Koyama: Department of Physics, The University of Tokyo
I. Kuti: Atomki
V. Lapoux: Université Paris-Saclay
S. Lindberg: Chalmers Tekniska Högskola
F. M. Marqués: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
S. Masuoka: The University of Tokyo
J. Mayer: Universität zu Köln
K. Miki: Tohoku University
T. Murakami: Kyoto University
M. Najafi: University of Groningen
T. Nakamura: Tokyo Institute of Technology
K. Nakano: Kyushu University
N. Nakatsuka: Kyoto University
T. Nilsson: Chalmers Tekniska Högskola
A. Obertelli: Université Paris-Saclay
K. Ogata: Kyushu University
F. Oliveira Santos: Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3
N. A. Orr: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
H. Otsu: RIKEN Nishina Center
T. Otsuka: RIKEN Nishina Center
T. Ozaki: Tokyo Institute of Technology
V. Panin: RIKEN Nishina Center
T. Papenbrock: Oak Ridge National Laboratory
S. Paschalis: Technische Universität Darmstadt
A. Revel: Université de Caen Normandie, ENSICAEN, CNRS/IN2P3
D. Rossi: Technische Universität Darmstadt
A. T. Saito: Tokyo Institute of Technology
T. Y. Saito: Department of Physics, The University of Tokyo
M. Sasano: RIKEN Nishina Center
H. Sato: RIKEN Nishina Center
Y. Satou: Seoul National University
H. Scheit: Technische Universität Darmstadt
F. Schindler: Technische Universität Darmstadt
P. Schrock: The University of Tokyo
M. Shikata: Tokyo Institute of Technology
N. Shimizu: University of Tsukuba
Y. Shimizu: RIKEN Nishina Center
H. Simon: GSI Helmholtzzentrum für Schwerionenforschung
D. Sohler: Atomki
O. Sorlin: Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3
L. Stuhl: RIKEN Nishina Center
Z. H. Sun: Oak Ridge National Laboratory
S. Takeuchi: Tokyo Institute of Technology
M. Tanaka: Osaka University
M. Thoennessen: Michigan State University
H. Törnqvist: Technische Universität Darmstadt
Y. Togano: Tokyo Institute of Technology
T. Tomai: Tokyo Institute of Technology
J. Tscheuschner: Technische Universität Darmstadt
J. Tsubota: Tokyo Institute of Technology
N. Tsunoda: The University of Tokyo
T. Uesaka: RIKEN Nishina Center
Y. Utsuno: Japan Atomic Energy Agency
I. Vernon: Durham University
H. Wang: RIKEN Nishina Center
Z. Yang: RIKEN Nishina Center
M. Yasuda: Tokyo Institute of Technology
K. Yoneda: RIKEN Nishina Center
S. Yoshida: Utsunomiya University

Nature, 2023, vol. 620, issue 7976, 965-970

Abstract: Abstract Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10−21 s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called ‘doubly magic’ nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06352-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:620:y:2023:i:7976:d:10.1038_s41586-023-06352-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06352-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:620:y:2023:i:7976:d:10.1038_s41586-023-06352-6