EconPapers    
Economics at your fingertips  
 

Observation of the effect of gravity on the motion of antimatter

E. K. Anderson, C. J. Baker, W. Bertsche (), N. M. Bhatt, G. Bonomi, A. Capra, I. Carli, C. L. Cesar, M. Charlton, A. Christensen, R. Collister, A. Cridland Mathad, D. Duque Quiceno, S. Eriksson, A. Evans, N. Evetts, S. Fabbri, J. Fajans (), A. Ferwerda, T. Friesen, M. C. Fujiwara, D. R. Gill, L. M. Golino, M. B. Gomes Gonçalves, P. Grandemange, P. Granum, J. S. Hangst (), M. E. Hayden, D. Hodgkinson, E. D. Hunter, C. A. Isaac, A. J. U. Jimenez, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, N. Madsen, L. Martin, N. Massacret, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, M. Mostamand, P. S. Mullan, J. Nauta, K. Olchanski, A. N. Oliveira, J. Peszka, A. Powell, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, J. Schoonwater, D. M. Silveira, J. Singh, G. Smith, C. So, S. Stracka, G. Stutter, T. D. Tharp, K. A. Thompson, R. I. Thompson, E. Thorpe-Woods, C. Torkzaban, M. Urioni, P. Woosaree and J. S. Wurtele
Additional contact information
E. K. Anderson: Aarhus University
C. J. Baker: Swansea University
W. Bertsche: University of Manchester
N. M. Bhatt: Swansea University
G. Bonomi: University of Brescia, Brescia and INFN Pavia
A. Capra: TRIUMF
I. Carli: TRIUMF
C. L. Cesar: Instituto de Fisica, Universidade Federal do Rio de Janeiro
M. Charlton: Swansea University
A. Christensen: University of California at Berkeley
R. Collister: TRIUMF
A. Cridland Mathad: Swansea University
D. Duque Quiceno: TRIUMF
S. Eriksson: Swansea University
A. Evans: TRIUMF
N. Evetts: University of British Columbia
S. Fabbri: University of Manchester
J. Fajans: University of California at Berkeley
A. Ferwerda: York University
T. Friesen: University of Calgary
M. C. Fujiwara: TRIUMF
D. R. Gill: TRIUMF
L. M. Golino: Swansea University
M. B. Gomes Gonçalves: Swansea University
P. Grandemange: TRIUMF
P. Granum: Aarhus University
J. S. Hangst: Aarhus University
M. E. Hayden: Simon Fraser University
D. Hodgkinson: University of Manchester
E. D. Hunter: University of California at Berkeley
C. A. Isaac: Swansea University
A. J. U. Jimenez: TRIUMF
M. A. Johnson: University of Manchester
J. M. Jones: Swansea University
S. A. Jones: University of Groningen
S. Jonsell: Stockholm University
A. Khramov: TRIUMF
N. Madsen: Swansea University
L. Martin: TRIUMF
N. Massacret: TRIUMF
D. Maxwell: Swansea University
J. T. K. McKenna: Aarhus University
S. Menary: York University
T. Momose: TRIUMF
M. Mostamand: TRIUMF
P. S. Mullan: Swansea University
J. Nauta: Swansea University
K. Olchanski: TRIUMF
A. N. Oliveira: Aarhus University
J. Peszka: Swansea University
A. Powell: University of Calgary
C. Ø. Rasmussen: CERN
F. Robicheaux: Purdue University
R. L. Sacramento: Instituto de Fisica, Universidade Federal do Rio de Janeiro
M. Sameed: University of Manchester
E. Sarid: Soreq NRC
J. Schoonwater: Swansea University
D. M. Silveira: Instituto de Fisica, Universidade Federal do Rio de Janeiro
J. Singh: University of Manchester
G. Smith: TRIUMF
C. So: TRIUMF
S. Stracka: INFN Pisa
G. Stutter: Aarhus University
T. D. Tharp: Marquette University
K. A. Thompson: Swansea University
R. I. Thompson: TRIUMF
E. Thorpe-Woods: Swansea University
C. Torkzaban: University of California at Berkeley
M. Urioni: University of Brescia, Brescia and INFN Pavia
P. Woosaree: University of Calgary
J. S. Wurtele: University of California at Berkeley

Nature, 2023, vol. 621, issue 7980, 716-722

Abstract: Abstract Einstein’s general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4 appeared in 1928; the positron was observed5 in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6 by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06527-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:621:y:2023:i:7980:d:10.1038_s41586-023-06527-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06527-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:621:y:2023:i:7980:d:10.1038_s41586-023-06527-1