EconPapers    
Economics at your fingertips  
 

A microfluidic transistor for automatic control of liquids

Kaustav A. Gopinathan, Avanish Mishra, Baris R. Mutlu, Jon F. Edd and Mehmet Toner ()
Additional contact information
Kaustav A. Gopinathan: Massachusetts General Hospital
Avanish Mishra: Massachusetts General Hospital
Baris R. Mutlu: Massachusetts General Hospital
Jon F. Edd: Massachusetts General Hospital
Mehmet Toner: Massachusetts General Hospital

Nature, 2023, vol. 622, issue 7984, 735-741

Abstract: Abstract Microfluidics have enabled notable advances in molecular biology1,2, synthetic chemistry3,4, diagnostics5,6 and tissue engineering7. However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits8–10. Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip. Previous works on creating a microfluidic analogue to the electronic transistor11–13 did not replicate the transistor’s saturation behaviour, and could not achieve proportional amplification14, which is fundamental to modern circuit design15. Here we exploit the fluidic phenomenon of flow limitation16 to develop a microfluidic element capable of proportional amplification with flow–pressure characteristics completely analogous to the current–voltage characteristics of the electronic transistor. We then use this microfluidic transistor to directly translate fundamental electronic circuits into the fluidic domain, including the amplifier, regulator, level shifter, logic gate and latch. We also combine these building blocks to create more complex fluidic controllers, such as timers and clocks. Finally, we demonstrate a particle dispenser circuit that senses single suspended particles, performs signal processing and accordingly controls the movement of each particle in a deterministic fashion without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic-transistor-based circuits enable fluidic automatic controllers to manipulate liquids and single suspended particles for lab-on-a-chip platforms.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06517-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:622:y:2023:i:7984:d:10.1038_s41586-023-06517-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06517-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:622:y:2023:i:7984:d:10.1038_s41586-023-06517-3