On the origin of diffuse intensities in fcc electron diffraction patterns
Francisco Gil Coury (),
Cody Miller,
Robert Field and
Michael Kaufman ()
Additional contact information
Francisco Gil Coury: Universidade Federal de São Carlos
Cody Miller: SIGMA Division, Los Alamos National Laboratory
Robert Field: Colorado School of Mines
Michael Kaufman: Colorado School of Mines
Nature, 2023, vol. 622, issue 7984, 742-747
Abstract:
Abstract Interpreting diffuse intensities in electron diffraction patterns can be challenging in samples with high atomic-level complexity, as often is the case with multi-principal element alloys. For example, diffuse intensities in electron diffraction patterns from simple face-centred cubic (fcc) and related alloys have been attributed to short-range order1, medium-range order2 or a variety of different {111} planar defects, including thin twins3, thin hexagonal close-packed layers4, relrod spiking5 and incomplete ABC stacking6. Here we demonstrate that many of these diffuse intensities, including $${}^{1}{ / }_{3}$$ 1 ⁄ 3 {422} and $${}^{1}{ / }_{2}$$ 1 ⁄ 2 {311} in ⟨111⟩ and ⟨112⟩ selected area diffraction patterns, respectively, are due to reflections from higher-order Laue zones. We show similar features along many different zone axes in a wide range of simple fcc materials, including CdTe, pure Ni and pure Al. Using electron diffraction theory, we explain these intensities and show that our calculated intensities of projected higher-order Laue zone reflections as a function of deviation from their Bragg conditions match well with the observed intensities, proving that these intensities are universal in these fcc materials. Finally, we provide a framework for determining the nature and location of diffuse intensities that could indicate the presence of short-range order or medium-range order.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06530-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:622:y:2023:i:7984:d:10.1038_s41586-023-06530-6
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06530-6
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().