Antiviral type III CRISPR signalling via conjugation of ATP and SAM
Haotian Chi,
Ville Hoikkala,
Sabine Grüschow,
Shirley Graham,
Sally Shirran and
Malcolm F. White ()
Additional contact information
Haotian Chi: University of St Andrews
Ville Hoikkala: University of St Andrews
Sabine Grüschow: University of St Andrews
Shirley Graham: University of St Andrews
Sally Shirran: University of St Andrews
Malcolm F. White: University of St Andrews
Nature, 2023, vol. 622, issue 7984, 826-833
Abstract:
Abstract CRISPR systems are widespread in the prokaryotic world, providing adaptive immunity against mobile genetic elements1,2. Type III CRISPR systems, with the signature gene cas10, use CRISPR RNA to detect non-self RNA, activating the enzymatic Cas10 subunit to defend the cell against mobile genetic elements either directly, via the integral histidine–aspartate (HD) nuclease domain3–5 or indirectly, via synthesis of cyclic oligoadenylate second messengers to activate diverse ancillary effectors6–9. A subset of type III CRISPR systems encode an uncharacterized CorA-family membrane protein and an associated NrN family phosphodiesterase that are predicted to function in antiviral defence. Here we demonstrate that the CorA-associated type III-B (Cmr) CRISPR system from Bacteroides fragilis provides immunity against mobile genetic elements when expressed in Escherichia coli. However, B. fragilis Cmr does not synthesize cyclic oligoadenylate species on activation, instead generating S-adenosyl methionine (SAM)-AMP (SAM is also known as AdoMet) by conjugating ATP to SAM via a phosphodiester bond. Once synthesized, SAM-AMP binds to the CorA effector, presumably leading to cell dormancy or death by disruption of the membrane integrity. SAM-AMP is degraded by CRISPR-associated phosphodiesterases or a SAM-AMP lyase, potentially providing an ‘off switch’ analogous to cyclic oligoadenylate-specific ring nucleases10. SAM-AMP thus represents a new class of second messenger for antiviral signalling, which may function in different roles in diverse cellular contexts.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06620-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:622:y:2023:i:7984:d:10.1038_s41586-023-06620-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06620-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().