EconPapers    
Economics at your fingertips  
 

Carbon-to-nitrogen single-atom transmutation of azaarenes

Jisoo Woo, Colin Stein, Alec H. Christian () and Mark D. Levin ()
Additional contact information
Jisoo Woo: The University of Chicago
Colin Stein: The University of Chicago
Alec H. Christian: Merck & Co., Inc.
Mark D. Levin: The University of Chicago

Nature, 2023, vol. 623, issue 7985, 77-82

Abstract: Abstract When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a ‘sticky end’ approach subverts existing atom insertion–deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06613-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:623:y:2023:i:7985:d:10.1038_s41586-023-06613-4

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06613-4

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:623:y:2023:i:7985:d:10.1038_s41586-023-06613-4