Interface design for all-solid-state lithium batteries
Hongli Wan,
Zeyi Wang,
Weiran Zhang,
Xinzi He and
Chunsheng Wang ()
Additional contact information
Hongli Wan: University of Maryland
Zeyi Wang: University of Maryland
Weiran Zhang: University of Maryland
Xinzi He: University of Maryland
Chunsheng Wang: University of Maryland
Nature, 2023, vol. 623, issue 7988, 739-744
Abstract:
Abstract The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes1–4. Here we design a Mg16Bi84 interlayer at the Li/Li6PS5Cl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes to reduce the interfacial resistance. During Li plating–stripping cycles, Mg migrates from the Mg16Bi84 interlayer to the Li anode converting Mg16Bi84 into a multifunctional LiMgSx–Li3Bi–LiMg structure with the layers functioning as a solid electrolyte interphase, a porous Li3Bi sublayer and a solid binder (welding porous Li3Bi onto the Li anode), respectively. The Li3Bi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous Li3Bi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/Li6PS5Cl/Li cell to achieve a capacity of 7.2 mAh cm−2 at 2.55 mA cm−2, and the LiNiO2/Li6PS5Cl/Li cell to achieve a capacity of 11.1 mAh cm−2 with a cell-level energy density of 310 Wh kg−1 at a low stack pressure of 2.5 MPa. The Mg16Bi84 anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06653-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:623:y:2023:i:7988:d:10.1038_s41586-023-06653-w
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06653-w
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().