EconPapers    
Economics at your fingertips  
 

The high optical brightness of the BlueWalker 3 satellite

Sangeetha Nandakumar (), Siegfried Eggl (), Jeremy Tregloan-Reed (), Christian Adam, Jasmine Anderson-Baldwin, Michele T. Bannister, Adam Battle, Zouhair Benkhaldoun, Tanner Campbell, J. P. Colque, Guillermo Damke, Ilse Plauchu Frayn, Mourad Ghachoui, Pedro F. Guillen, Aziz Ettahar Kaeouach, Harrison R. Krantz, Marco Langbroek, Nicholas Rattenbury, Vishnu Reddy, Ryan Ridden-Harper, Brad Young, Eduardo Unda-Sanzana, Alan M. Watson, Constance E. Walker, John C. Barentine, Piero Benvenuti, Federico Vruno, Mike W. Peel, Meredith L. Rawls, Cees Bassa, Catalina Flores-Quintana, Pablo García, Sam Kim, Penélope Longa-Peña, Edgar Ortiz, Ángel Otarola, María Romero-Colmenares, Pedro Sanhueza, Giorgio Siringo and Mario Soto
Additional contact information
Sangeetha Nandakumar: Universidad de Atacama
Siegfried Eggl: University of Illinois at Urbana–Champaign
Jeremy Tregloan-Reed: Universidad de Atacama
Christian Adam: Universidad de Antofagasta
Jasmine Anderson-Baldwin: The University of Auckland
Michele T. Bannister: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Adam Battle: University of Arizona
Zouhair Benkhaldoun: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Tanner Campbell: University of Arizona
J. P. Colque: Universidad de Antofagasta
Guillermo Damke: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Ilse Plauchu Frayn: Universidad Nacional Autónoma de Méxic
Mourad Ghachoui: Cadi Ayyad University
Pedro F. Guillen: Universidad Nacional Autónoma de Méxic
Aziz Ettahar Kaeouach: Oukaimeden Observatory
Harrison R. Krantz: University of Arizona Steward Observatory
Marco Langbroek: Delft Technical University
Nicholas Rattenbury: The University of Auckland
Vishnu Reddy: University of Arizona
Ryan Ridden-Harper: University of Canterbury
Brad Young: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Eduardo Unda-Sanzana: Universidad de Antofagasta
Alan M. Watson: Universidad Nacional Autónoma de México
Constance E. Walker: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
John C. Barentine: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Piero Benvenuti: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Federico Vruno: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Mike W. Peel: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Meredith L. Rawls: IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference
Cees Bassa: ASTRON Netherlands Institute for Radio Astronomy
Catalina Flores-Quintana: Universidad Andrés Bello
Pablo García: Universidad Católica del Norte
Sam Kim: Pontificia Universidad Católica de Chile
Penélope Longa-Peña: Universidad de Antofagasta
Edgar Ortiz: Universidad de Atacama
Ángel Otarola: European Southern Observatory (Chile) Alonso de Córdova
María Romero-Colmenares: Universidad de Atacama
Pedro Sanhueza: NSFs NOIRLab
Giorgio Siringo: European Southern Observatory (Chile) Alonso de Córdova
Mario Soto: Universidad de Atacama

Nature, 2023, vol. 623, issue 7989, 938-941

Abstract: Abstract Large constellations of bright artificial satellites in low Earth orbit pose significant challenges to ground-based astronomy1. Current orbiting constellation satellites have brightnesses between apparent magnitudes 4 and 6, whereas in the near-infrared Ks band, they can reach magnitude 2 (ref. 2). Satellite operators, astronomers and other users of the night sky are working on brightness mitigation strategies3,4. Radio emissions induce further potential risk to ground-based radio telescopes that also need to be evaluated. Here we report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile’s BlueWalker 3. BlueWalker 3 features a 64.3 m2 phased-array antenna as well as a launch vehicle adaptor (LVA)5. The peak brightness of the satellite reached an apparent magnitude of 0.4. This made the new satellite one of the brightest objects in the night sky. Additionally, the LVA reached an apparent V-band magnitude of 5.5, four times brighter than the current International Astronomical Union recommendation of magnitude 7 (refs. 3,6); it jettisoned on 10 November 2022 (Universal Time), and its orbital ephemeris was not publicly released until 4 days later. The expected build-out of constellations with hundreds of thousands of new bright objects1 will make active satellite tracking and avoidance strategies a necessity for ground-based telescopes.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06672-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:623:y:2023:i:7989:d:10.1038_s41586-023-06672-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06672-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:623:y:2023:i:7989:d:10.1038_s41586-023-06672-7