EconPapers    
Economics at your fingertips  
 

15NH3 in the atmosphere of a cool brown dwarf

David Barrado (), Paul Mollière, Polychronis Patapis, Michiel Min, Pascal Tremblin, Francisco Ardevol Martinez, Niall Whiteford, Malavika Vasist, Ioannis Argyriou, Matthias Samland, Pierre-Olivier Lagage, Leen Decin, Rens Waters, Thomas Henning, María Morales-Calderón, Manuel Guedel, Bart Vandenbussche, Olivier Absil, Pierre Baudoz, Anthony Boccaletti, Jeroen Bouwman, Christophe Cossou, Alain Coulais, Nicolas Crouzet, René Gastaud, Alistair Glasse, Adrian M. Glauser, Inga Kamp, Sarah Kendrew, Oliver Krause, Fred Lahuis, Michael Mueller, Göran Olofsson, John Pye, Daniel Rouan, Pierre Royer, Silvia Scheithauer, Ingo Waldmann, Luis Colina, Ewine F. Dishoeck, Tom Ray, Göran Östlin and Gillian Wright
Additional contact information
David Barrado: Centro de Astrobiología (CAB), CSIC-INTA
Paul Mollière: Max-Planck-Institut für Astronomie (MPIA)
Polychronis Patapis: ETH Zurich
Michiel Min: SRON Netherlands Institute for Space Research
Pascal Tremblin: Université Paris-Saclay, UVSQ, CNRS, CEA
Francisco Ardevol Martinez: SRON Netherlands Institute for Space Research
Niall Whiteford: American Museum of Natural History
Malavika Vasist: Université de Liège
Ioannis Argyriou: Institute of Astronomy, KU Leuven
Matthias Samland: Max-Planck-Institut für Astronomie (MPIA)
Pierre-Olivier Lagage: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
Leen Decin: Institute of Astronomy, KU Leuven
Rens Waters: SRON Netherlands Institute for Space Research
Thomas Henning: Max-Planck-Institut für Astronomie (MPIA)
María Morales-Calderón: Centro de Astrobiología (CAB), CSIC-INTA
Manuel Guedel: Max-Planck-Institut für Astronomie (MPIA)
Bart Vandenbussche: Institute of Astronomy, KU Leuven
Olivier Absil: Université de Liège
Pierre Baudoz: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité
Anthony Boccaletti: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité
Jeroen Bouwman: Max-Planck-Institut für Astronomie (MPIA)
Christophe Cossou: Université Paris-Saclay, CEA, IRFU
Alain Coulais: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
Nicolas Crouzet: Leiden University
René Gastaud: Université Paris-Saclay, CEA, IRFU
Alistair Glasse: Royal Observatory Edinburgh
Adrian M. Glauser: ETH Zurich
Inga Kamp: University of Groningen
Sarah Kendrew: European Space Agency, Space Telescope Science Institute
Oliver Krause: Max-Planck-Institut für Astronomie (MPIA)
Fred Lahuis: SRON Netherlands Institute for Space Research
Michael Mueller: University of Groningen
Göran Olofsson: Stockholm University, AlbaNova University Center
John Pye: University of Leicester
Daniel Rouan: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité
Pierre Royer: Institute of Astronomy, KU Leuven
Silvia Scheithauer: Max-Planck-Institut für Astronomie (MPIA)
Ingo Waldmann: University College London
Luis Colina: Centro de Astrobiología (CAB), CSIC-INTA
Ewine F. Dishoeck: Leiden University
Tom Ray: Dublin Institute for Advanced Studies
Göran Östlin: Stockholm University
Gillian Wright: Royal Observatory Edinburgh

Nature, 2023, vol. 624, issue 7991, 263-266

Abstract: Abstract Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5–7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06813-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:624:y:2023:i:7991:d:10.1038_s41586-023-06813-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06813-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:624:y:2023:i:7991:d:10.1038_s41586-023-06813-y