EconPapers    
Economics at your fingertips  
 

SO2, silicate clouds, but no CH4 detected in a warm Neptune

Achrène Dyrek (), Michiel Min, Leen Decin, Jeroen Bouwman, Nicolas Crouzet, Paul Mollière, Pierre-Olivier Lagage, Thomas Konings, Pascal Tremblin, Manuel Güdel, John Pye, Rens Waters, Thomas Henning, Bart Vandenbussche, Francisco Ardevol Martinez, Ioannis Argyriou, Elsa Ducrot, Linus Heinke, Gwenael Looveren, Olivier Absil, David Barrado, Pierre Baudoz, Anthony Boccaletti, Christophe Cossou, Alain Coulais, Billy Edwards, René Gastaud, Alistair Glasse, Adrian Glauser, Thomas P. Greene, Sarah Kendrew, Oliver Krause, Fred Lahuis, Michael Mueller, Goran Olofsson, Polychronis Patapis, Daniel Rouan, Pierre Royer, Silvia Scheithauer, Ingo Waldmann, Niall Whiteford, Luis Colina, Ewine F. Dishoeck, Göran Östlin, Tom P. Ray and Gillian Wright
Additional contact information
Achrène Dyrek: Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM
Michiel Min: SRON Netherlands Institute for Space Research
Leen Decin: KU Leuven
Jeroen Bouwman: Max-Planck-Institut für Astronomie (MPIA)
Nicolas Crouzet: Leiden University
Paul Mollière: Max-Planck-Institut für Astronomie (MPIA)
Pierre-Olivier Lagage: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
Thomas Konings: KU Leuven
Pascal Tremblin: Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation
Manuel Güdel: Max-Planck-Institut für Astronomie (MPIA)
John Pye: University of Leicester
Rens Waters: SRON Netherlands Institute for Space Research
Thomas Henning: Max-Planck-Institut für Astronomie (MPIA)
Bart Vandenbussche: KU Leuven
Francisco Ardevol Martinez: SRON Netherlands Institute for Space Research
Ioannis Argyriou: KU Leuven
Elsa Ducrot: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
Linus Heinke: KU Leuven
Gwenael Looveren: University of Vienna
Olivier Absil: Université de Liège
David Barrado: Centro de Astrobiología (CAB), CSIC-INTA
Pierre Baudoz: LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université
Anthony Boccaletti: LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université
Christophe Cossou: Université Paris-Saclay, CEA
Alain Coulais: Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM
Billy Edwards: SRON Netherlands Institute for Space Research
René Gastaud: Université Paris-Saclay, CEA
Alistair Glasse: Royal Observatory Edinburgh
Adrian Glauser: ETH Zürich
Thomas P. Greene: NASA’s Ames Research Center
Sarah Kendrew: Space Telescope Science Institute
Oliver Krause: Max-Planck-Institut für Astronomie (MPIA)
Fred Lahuis: SRON Netherlands Institute for Space Research
Michael Mueller: University of Groningen
Goran Olofsson: Stockholm University, AlbaNova University Center
Polychronis Patapis: ETH Zürich
Daniel Rouan: Centro de Astrobiología (CAB), CSIC-INTA
Pierre Royer: KU Leuven
Silvia Scheithauer: Max-Planck-Institut für Astronomie (MPIA)
Ingo Waldmann: University College London
Niall Whiteford: American Museum of Natural History
Luis Colina: Centro de Astrobiología (CAB), CSIC-INTA
Ewine F. Dishoeck: Leiden University
Göran Östlin: Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM
Tom P. Ray: Dublin Institute for Advanced Studies
Gillian Wright: Royal Observatory Edinburgh

Nature, 2024, vol. 625, issue 7993, 51-54

Abstract: Abstract WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 μm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8–10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 μm and 8.69 μm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06849-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:625:y:2024:i:7993:d:10.1038_s41586-023-06849-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06849-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:625:y:2024:i:7993:d:10.1038_s41586-023-06849-0