Alternative splicing of latrophilin-3 controls synapse formation
Shuai Wang (),
Chelsea DeLeon,
Wenfei Sun,
Stephen R. Quake,
Bryan L. Roth and
Thomas C. Südhof ()
Additional contact information
Shuai Wang: Stanford University
Chelsea DeLeon: UNC Chapel Hill School of Medicine
Wenfei Sun: Stanford University
Stephen R. Quake: Stanford University
Bryan L. Roth: UNC Chapel Hill School of Medicine
Thomas C. Südhof: Stanford University
Nature, 2024, vol. 626, issue 7997, 128-135
Abstract:
Abstract The assembly and specification of synapses in the brain is incompletely understood1–3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)—a postsynaptic adhesion G-protein-coupled receptor—mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06913-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:626:y:2024:i:7997:d:10.1038_s41586-023-06913-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06913-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().