EconPapers    
Economics at your fingertips  
 

Establishing reaction networks in the 16-electron sulfur reduction reaction

Rongli Liu, Ziyang Wei, Lele Peng, Leyuan Zhang, Arava Zohar, Rachel Schoeppner, Peiqi Wang, Chengzhang Wan, Dan Zhu, Haotian Liu, Zhaozong Wang, Sarah H. Tolbert, Bruce Dunn, Yu Huang, Philippe Sautet () and Xiangfeng Duan ()
Additional contact information
Rongli Liu: University of California
Ziyang Wei: University of California
Lele Peng: University of California
Leyuan Zhang: University of California
Arava Zohar: University of California
Rachel Schoeppner: University of California
Peiqi Wang: University of California
Chengzhang Wan: University of California
Dan Zhu: University of California
Haotian Liu: University of California
Zhaozong Wang: University of California
Sarah H. Tolbert: University of California
Bruce Dunn: University of California
Yu Huang: University of California
Philippe Sautet: University of California
Xiangfeng Duan: University of California

Nature, 2024, vol. 626, issue 7997, 98-104

Abstract: Abstract The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S) batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple lithium polysulfide intermediates and reaction branches1–3. Establishing the complex reaction network is essential for rational tailoring of the SRR for improved Li-S batteries, but represents a daunting challenge4–6. Herein we systematically investigate the electrocatalytic SRR to decipher its network using the nitrogen, sulfur, dual-doped holey graphene framework as a model electrode to understand the role of electrocatalysts in acceleration of conversion kinetics. Combining cyclic voltammetry, in situ Raman spectroscopy and density functional theory calculations, we identify and directly profile the key intermediates (S8, Li2S8, Li2S6, Li2S4 and Li2S) at varying potentials and elucidate their conversion pathways. Li2S4 and Li2S6 were predominantly observed, in which Li2S4 represents the key electrochemical intermediate dictating the overall SRR kinetics. Li2S6, generated (consumed) through a comproportionation (disproportionation) reaction, does not directly participate in electrochemical reactions but significantly contributes to the polysulfide shuttling process. We found that the nitrogen, sulfur dual-doped holey graphene framework catalyst could help accelerate polysulfide conversion kinetics, leading to faster depletion of soluble lithium polysulfides at higher potential and hence mitigating the polysulfide shuttling effect and boosting output potential. These results highlight the electrocatalytic approach as a promising strategy for tackling the fundamental challenges regarding Li-S batteries.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06918-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:626:y:2024:i:7997:d:10.1038_s41586-023-06918-4

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06918-4

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:nature:v:626:y:2024:i:7997:d:10.1038_s41586-023-06918-4