EconPapers    
Economics at your fingertips  
 

Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects

Haonan Zhao, Claire E. Arneson, Dejiu Fan and Stephen R. Forrest ()
Additional contact information
Haonan Zhao: University of Michigan
Claire E. Arneson: University of Michigan
Dejiu Fan: University of Michigan
Stephen R. Forrest: University of Michigan

Nature, 2024, vol. 626, issue 7998, 300-305

Abstract: Abstract Phosphorescent organic light-emitting diodes (PHOLEDs) feature high efficiency1,2, brightness and colour tunability suitable for both display and lighting applications3. However, overcoming the short operational lifetime of blue PHOLEDs remains one of the most challenging high-value problems in the field of organic electronics. Their short lifetimes originate from the annihilation of high-energy, long-lived blue triplets that leads to molecular dissociation4–7. The Purcell effect, the enhancement of the radiative decay rate in a microcavity, can reduce the triplet density and, hence, the probability of destructive high-energy triplet–polaron annihilation (TPA)5,6 and triplet–triplet annihilation (TTA) events4,5,7,8. Here we introduce the polariton-enhanced Purcell effect in blue PHOLEDs. We find that plasmon–exciton polaritons9 (PEPs) substantially increase the strength of the Purcell effect and achieve an average Purcell factor (PF) of 2.4 ± 0.2 over a 50-nm-thick emission layer (EML) in a blue PHOLED. A 5.3-fold improvement in LT90 (the time for the PHOLED luminance to decay to 90% of its initial value) of a cyan-emitting Ir-complex device is achieved compared with its use in a conventional PHOLED. Shifting the chromaticity coordinates to (0.14, 0.14) and (0.15, 0.20) into the deep blue, the Purcell-enhanced devices achieve 10–14 times improvement over similarly deep-blue PHOLEDs, with one structure reaching the longest Ir-complex device lifetime of LT90 = 140 ± 20 h reported so far10–21. The polariton-enhanced Purcell effect and microcavity engineering provide new possibilities for extending deep-blue PHOLED lifetimes.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-023-06976-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:626:y:2024:i:7998:d:10.1038_s41586-023-06976-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-023-06976-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:626:y:2024:i:7998:d:10.1038_s41586-023-06976-8