Symmetry breaking and chiral amplification in prebiotic ligation reactions
Min Deng,
Jinhan Yu and
Donna G. Blackmond ()
Additional contact information
Min Deng: Scripps Research
Jinhan Yu: Scripps Research
Donna G. Blackmond: Scripps Research
Nature, 2024, vol. 626, issue 8001, 1019-1024
Abstract:
Abstract The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks—sugars and amino acids—that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as “the problem of original syn”2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3–5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of l monomers with d monomers). Although this finding seems problematic for the prebiotic emergence of homochiral l-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07059-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:626:y:2024:i:8001:d:10.1038_s41586-024-07059-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07059-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().