Ion and lipid orchestration of secondary active transport
David Drew () and
Olga Boudker ()
Additional contact information
David Drew: Stockholm University
Olga Boudker: Weill Cornell Medicine
Nature, 2024, vol. 626, issue 8001, 963-974
Abstract:
Abstract Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07062-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:626:y:2024:i:8001:d:10.1038_s41586-024-07062-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07062-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().