A small and vigorous black hole in the early Universe
Roberto Maiolino (),
Jan Scholtz,
Joris Witstok,
Stefano Carniani,
Francesco D’Eugenio,
Anna Graaff,
Hannah Übler,
Sandro Tacchella,
Emma Curtis-Lake,
Santiago Arribas,
Andrew Bunker,
Stéphane Charlot,
Jacopo Chevallard,
Mirko Curti,
Tobias J. Looser,
Michael V. Maseda,
Timothy D. Rawle,
Bruno Rodríguez del Pino,
Chris J. Willott,
Eiichi Egami,
Daniel J. Eisenstein,
Kevin N. Hainline,
Brant Robertson,
Christina C. Williams,
Christopher N. A. Willmer,
William M. Baker,
Kristan Boyett,
Christa DeCoursey,
Andrew C. Fabian,
Jakob M. Helton,
Zhiyuan Ji,
Gareth C. Jones,
Nimisha Kumari,
Nicolas Laporte,
Erica J. Nelson,
Michele Perna,
Lester Sandles,
Irene Shivaei and
Fengwu Sun
Additional contact information
Roberto Maiolino: University of Cambridge
Jan Scholtz: University of Cambridge
Joris Witstok: University of Cambridge
Stefano Carniani: Scuola Normale Superiore
Francesco D’Eugenio: University of Cambridge
Anna Graaff: Max-Planck-Institut für Astronomie
Hannah Übler: University of Cambridge
Sandro Tacchella: University of Cambridge
Emma Curtis-Lake: University of Hertfordshire
Santiago Arribas: Centro de Astrobiología (CAB), CSIC–INTA
Andrew Bunker: University of Oxford
Stéphane Charlot: Sorbonne Université, CNRS
Jacopo Chevallard: University of Oxford
Mirko Curti: European Southern Observatory
Tobias J. Looser: University of Cambridge
Michael V. Maseda: University of Wisconsin-Madison
Timothy D. Rawle: European Space Agency, Space Telescope Science Institute
Bruno Rodríguez del Pino: Centro de Astrobiología (CAB), CSIC–INTA
Chris J. Willott: NRC Herzberg
Eiichi Egami: Steward Observatory University of Arizona
Daniel J. Eisenstein: Center for Astrophysics - Harvard & Smithsonian
Kevin N. Hainline: Steward Observatory University of Arizona
Brant Robertson: University of California, Santa Cruz
Christina C. Williams: NSF’s National Optical-Infrared Astronomy Research Laboratory
Christopher N. A. Willmer: Steward Observatory University of Arizona
William M. Baker: University of Cambridge
Kristan Boyett: University of Melbourne
Christa DeCoursey: Steward Observatory University of Arizona
Andrew C. Fabian: University of Cambridge
Jakob M. Helton: Steward Observatory University of Arizona
Zhiyuan Ji: Steward Observatory University of Arizona
Gareth C. Jones: University of Oxford
Nimisha Kumari: AURA for European Space Agency, Space Telescope Science Institute
Nicolas Laporte: University of Cambridge
Erica J. Nelson: University of Colorado
Michele Perna: Centro de Astrobiología (CAB), CSIC–INTA
Lester Sandles: University of Cambridge
Irene Shivaei: Steward Observatory University of Arizona
Fengwu Sun: Steward Observatory University of Arizona
Nature, 2024, vol. 627, issue 8002, 59-63
Abstract:
Abstract Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of $$\log ({M}_{{\rm{BH}}}/{M}_{\odot })=6.2\pm 0.3$$ log ( M BH / M ⊙ ) = 6.2 ± 0.3 , accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07052-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:627:y:2024:i:8002:d:10.1038_s41586-024-07052-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07052-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().