EconPapers    
Economics at your fingertips  
 

All-optical frequency division on-chip using a single laser

Yun Zhao, Jae K. Jang, Garrett J. Beals, Karl J. McNulty, Xingchen Ji, Yoshitomo Okawachi, Michal Lipson and Alexander L. Gaeta ()
Additional contact information
Yun Zhao: Columbia University
Jae K. Jang: Columbia University
Garrett J. Beals: Columbia University
Karl J. McNulty: Columbia University
Xingchen Ji: Columbia University
Yoshitomo Okawachi: Columbia University
Michal Lipson: Columbia University
Alexander L. Gaeta: Columbia University

Nature, 2024, vol. 627, issue 8004, 546-552

Abstract: Abstract The generation of spectrally pure microwave signals is a critical functionality in fundamental and applied sciences, including metrology and communications. Optical frequency combs enable the powerful technique of optical frequency division (OFD) to produce microwave oscillations of the highest quality1,2. Current implementations of OFD require multiple lasers, with space- and energy-consuming optical stabilization and electronic feedback components, resulting in device footprints incompatible with integration into a compact and robust photonic platform3–5. Here we demonstrate all-optical OFD on a photonic chip by synchronizing two distinct dynamical states of Kerr microresonators pumped by a single continuous-wave laser. The inherent stability of the terahertz beat frequency between the signal and idler fields of an optical parametric oscillator is transferred to a microwave frequency of a Kerr soliton comb, and synchronization is achieved via a coupling waveguide without the need for electronic locking. OFD factors of N = 34 and 468 are achieved for 227 GHz and 16 GHz soliton combs, respectively. In particular, OFD enables a 46 dB phase-noise reduction for the 16 GHz soliton comb, resulting in the lowest microwave noise observed in an integrated photonics platform. Our work represents a simple, effective approach for performing OFD and provides a pathway towards chip-scale devices that can generate microwave frequencies comparable to the purest tones produced in metrological laboratories.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-024-07136-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:627:y:2024:i:8004:d:10.1038_s41586-024-07136-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-07136-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:627:y:2024:i:8004:d:10.1038_s41586-024-07136-2