The complex circumstellar environment of supernova 2023ixf
E. A. Zimmerman (),
I. Irani,
P. Chen,
A. Gal-Yam,
S. Schulze,
D. A. Perley,
J. Sollerman,
A. V. Filippenko,
T. Shenar,
O. Yaron,
S. Shahaf,
R. J. Bruch,
E. O. Ofek,
A. Cia,
T. G. Brink,
Y. Yang,
S. S. Vasylyev,
S. Ami,
M. Aubert,
A. Badash,
J. S. Bloom,
P. J. Brown,
K. De,
G. Dimitriadis,
C. Fransson,
C. Fremling,
K. Hinds,
A. Horesh,
J. P. Johansson,
M. M. Kasliwal,
S. R. Kulkarni,
D. Kushnir,
C. Martin,
M. Matuzewski,
R. C. McGurk,
A. A. Miller,
J. Morag,
J. D. Neil,
P. E. Nugent,
R. S. Post,
N. Z. Prusinski,
Y. Qin,
A. Raichoor,
R. Riddle,
M. Rowe,
B. Rusholme,
I. Sfaradi,
K. M. Sjoberg,
M. Soumagnac,
R. D. Stein,
N. L. Strotjohann,
J. H. Terwel,
T. Wasserman,
J. Wise,
A. Wold,
L. Yan and
K. Zhang
Additional contact information
E. A. Zimmerman: Weizmann Institute of Science
I. Irani: Weizmann Institute of Science
P. Chen: Weizmann Institute of Science
A. Gal-Yam: Weizmann Institute of Science
S. Schulze: Stockholm University, AlbaNova
D. A. Perley: Liverpool John Moores University
J. Sollerman: Stockholm University, AlbaNova
A. V. Filippenko: University of California, Berkeley
T. Shenar: Centro de Astrobiología (CSIC-INTA)
O. Yaron: Weizmann Institute of Science
S. Shahaf: Weizmann Institute of Science
R. J. Bruch: Weizmann Institute of Science
E. O. Ofek: Weizmann Institute of Science
A. Cia: European Southern Observatory
T. G. Brink: University of California, Berkeley
Y. Yang: University of California, Berkeley
S. S. Vasylyev: University of California, Berkeley
S. Ami: Weizmann Institute of Science
M. Aubert: Université Clermont Auvergne, CNRS/IN2P3, LPC
A. Badash: Weizmann Institute of Science
J. S. Bloom: University of California, Berkeley
P. J. Brown: Texas A&M University
K. De: MIT Kavli Institute for Astrophysics and Space Research
G. Dimitriadis: The University of Dublin
C. Fransson: Stockholm University, AlbaNova
C. Fremling: California Institute of Technology
K. Hinds: Liverpool John Moores University
A. Horesh: The Hebrew University of Jerusalem
J. P. Johansson: Stockholm University, AlbaNova
M. M. Kasliwal: California Institute of Technology
S. R. Kulkarni: California Institute of Technology
D. Kushnir: Weizmann Institute of Science
C. Martin: California Institute of Technology
M. Matuzewski: California Institute of Technology
R. C. McGurk: W. M. Keck Observatory
A. A. Miller: Northwestern University
J. Morag: Weizmann Institute of Science
J. D. Neil: California Institute of Technology
P. E. Nugent: University of California, Berkeley
R. S. Post: Post Observatory
N. Z. Prusinski: California Institute of Technology
Y. Qin: California Institute of Technology
A. Raichoor: University of California, Berkeley
R. Riddle: California Institute of Technology
M. Rowe: Texas A&M University
B. Rusholme: California Institute of Technology
I. Sfaradi: The Hebrew University of Jerusalem
K. M. Sjoberg: Harvard University
M. Soumagnac: Lawrence Berkeley National Laboratory
R. D. Stein: California Institute of Technology
N. L. Strotjohann: Weizmann Institute of Science
J. H. Terwel: The University of Dublin
T. Wasserman: Weizmann Institute of Science
J. Wise: Liverpool John Moores University
A. Wold: California Institute of Technology
L. Yan: California Institute of Technology
K. Zhang: University of California, Berkeley
Nature, 2024, vol. 627, issue 8005, 759-762
Abstract:
Abstract The early evolution of a supernova (SN) can reveal information about the environment and the progenitor star. When a star explodes in vacuum, the first photons to escape from its surface appear as a brief, hours-long shock-breakout flare1,2, followed by a cooling phase of emission. However, for stars exploding within a distribution of dense, optically thick circumstellar material (CSM), the first photons escape from the material beyond the stellar edge and the duration of the initial flare can extend to several days, during which the escaping emission indicates photospheric heating3. Early serendipitous observations2,4 that lacked ultraviolet (UV) data were unable to determine whether the early emission is heating or cooling and hence the nature of the early explosion event. Here we report UV spectra of the nearby SN 2023ixf in the galaxy Messier 101 (M101). Using the UV data as well as a comprehensive set of further multiwavelength observations, we temporally resolve the emergence of the explosion shock from a thick medium heated by the SN emission. We derive a reliable bolometric light curve that indicates that the shock breaks out from a dense layer with a radius substantially larger than typical supergiants.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07116-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:627:y:2024:i:8005:d:10.1038_s41586-024-07116-6
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07116-6
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().