Controlling the helicity of light by electrical magnetization switching
Pambiang Abel Dainone,
Nicholas Figueiredo Prestes,
Pierre Renucci,
Alexandre Bouché,
Martina Morassi,
Xavier Devaux,
Markus Lindemann,
Jean-Marie George,
Henri Jaffrès,
Aristide Lemaitre,
Bo Xu,
Mathieu Stoffel,
Tongxin Chen,
Laurent Lombez,
Delphine Lagarde,
Guangwei Cong,
Tianyi Ma,
Philippe Pigeat,
Michel Vergnat,
Hervé Rinnert,
Xavier Marie,
Xiufeng Han,
Stephane Mangin,
Juan-Carlos Rojas-Sánchez,
Jian-Ping Wang,
Matthew C. Beard,
Nils C. Gerhardt,
Igor Žutić and
Yuan Lu ()
Additional contact information
Pambiang Abel Dainone: Université de Lorraine, CNRS, UMR 7198
Nicholas Figueiredo Prestes: CNRS, Thales, Université Paris-Saclay
Pierre Renucci: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Alexandre Bouché: Université de Lorraine, CNRS, UMR 7198
Martina Morassi: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
Xavier Devaux: Université de Lorraine, CNRS, UMR 7198
Markus Lindemann: Ruhr-Universität Bochum
Jean-Marie George: CNRS, Thales, Université Paris-Saclay
Henri Jaffrès: CNRS, Thales, Université Paris-Saclay
Aristide Lemaitre: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
Bo Xu: Chinese Academy of Sciences
Mathieu Stoffel: Université de Lorraine, CNRS, UMR 7198
Tongxin Chen: Université de Lorraine, CNRS, UMR 7198
Laurent Lombez: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Delphine Lagarde: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Guangwei Cong: National Institute of Advanced Industrial Science and Technology
Tianyi Ma: University of Chinese Academy of Sciences, Chinese Academy of Sciences
Philippe Pigeat: Université de Lorraine, CNRS, UMR 7198
Michel Vergnat: Université de Lorraine, CNRS, UMR 7198
Hervé Rinnert: Université de Lorraine, CNRS, UMR 7198
Xavier Marie: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Xiufeng Han: University of Chinese Academy of Sciences, Chinese Academy of Sciences
Stephane Mangin: Université de Lorraine, CNRS, UMR 7198
Juan-Carlos Rojas-Sánchez: Université de Lorraine, CNRS, UMR 7198
Jian-Ping Wang: University of Minnesota
Matthew C. Beard: National Renewable Energy Laboratory
Nils C. Gerhardt: Ruhr-Universität Bochum
Igor Žutić: University at Buffalo, State University of New York
Yuan Lu: Université de Lorraine, CNRS, UMR 7198
Nature, 2024, vol. 627, issue 8005, 783-788
Abstract:
Abstract Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2–7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin–orbit torque8–11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin–photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space–light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07125-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:627:y:2024:i:8005:d:10.1038_s41586-024-07125-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07125-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().