Five million years of Antarctic Circumpolar Current strength variability
Frank Lamy (),
Gisela Winckler,
Helge W. Arz,
Jesse R. Farmer,
Julia Gottschalk,
Lester Lembke-Jene,
Jennifer L. Middleton,
Michèlle Does,
Ralf Tiedemann,
Carlos Alvarez Zarikian,
Chandranath Basak,
Anieke Brombacher,
Levin Dumm,
Oliver M. Esper,
Lisa C. Herbert,
Shinya Iwasaki,
Gaston Kreps,
Vera J. Lawson,
Li Lo,
Elisa Malinverno,
Alfredo Martinez-Garcia,
Elisabeth Michel,
Simone Moretti,
Christopher M. Moy,
Ana Christina Ravelo,
Christina R. Riesselman,
Mariem Saavedra-Pellitero,
Henrik Sadatzki,
Inah Seo,
Raj K. Singh,
Rebecca A. Smith,
Alexandre L. Souza,
Joseph S. Stoner,
Maria Toyos,
Igor M. Venancio P. Oliveira,
Sui Wan,
Shuzhuang Wu and
Xiangyu Zhao
Additional contact information
Frank Lamy: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Gisela Winckler: Columbia University
Helge W. Arz: Leibniz Institute for Baltic Sea Research Warnemünde
Jesse R. Farmer: University of Massachusetts Boston
Julia Gottschalk: Kiel University
Lester Lembke-Jene: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Jennifer L. Middleton: Columbia University
Michèlle Does: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Ralf Tiedemann: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Carlos Alvarez Zarikian: Texas A&M University
Chandranath Basak: University of Delaware
Anieke Brombacher: Yale University
Oliver M. Esper: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Lisa C. Herbert: Stony Brook University
Shinya Iwasaki: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Gaston Kreps: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Vera J. Lawson: Rutgers, The State University of New Jersey
Li Lo: National Taiwan University
Elisa Malinverno: University of Milano-Bicocca
Alfredo Martinez-Garcia: Max Planck Institute for Chemistry (MPIC)
Elisabeth Michel: Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL), CNRS-CEA-UVSQ
Simone Moretti: Max Planck Institute for Chemistry (MPIC)
Christopher M. Moy: University of Otago
Ana Christina Ravelo: University of California, Santa Cruz
Christina R. Riesselman: University of Otago
Mariem Saavedra-Pellitero: University of Portsmouth
Henrik Sadatzki: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Inah Seo: Korea Institute of Ocean Science and Technology (KIOST)
Raj K. Singh: Indian Institute of Technology Bhubaneswar
Rebecca A. Smith: University of Massachusetts Amherst
Alexandre L. Souza: Federal University of Rio de Janeiro
Joseph S. Stoner: Oregon State University
Maria Toyos: Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research
Igor M. Venancio P. Oliveira: Fluminense Federal University
Sui Wan: Chinese Academy of Sciences
Shuzhuang Wu: University of Lausanne
Xiangyu Zhao: National Institute of Polar Research
Nature, 2024, vol. 627, issue 8005, 789-796
Abstract:
Abstract The Antarctic Circumpolar Current (ACC) represents the world’s largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1–3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial–interglacial cycles5–8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11–13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07143-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:627:y:2024:i:8005:d:10.1038_s41586-024-07143-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07143-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().