EconPapers    
Economics at your fingertips  
 

Arresting failure propagation in buildings through collapse isolation

Nirvan Makoond, Andri Setiawan, Manuel Buitrago and Jose M. Adam ()
Additional contact information
Nirvan Makoond: Universitat Politècnica de València
Andri Setiawan: Universitat Politècnica de València
Manuel Buitrago: Universitat Politècnica de València
Jose M. Adam: Universitat Politècnica de València

Nature, 2024, vol. 629, issue 8012, 592-596

Abstract: Abstract Several catastrophic building collapses1–5 occur because of the propagation of local-initial failures6,7. Current design methods attempt to completely prevent collapse after initial failures by improving connectivity between building components. These measures ensure that the loads supported by the failed components are redistributed to the rest of the structural system8,9. However, increased connectivity can contribute to collapsing elements pulling down parts of a building that would otherwise be unaffected10. This risk is particularly important when large initial failures occur, as tends to be the case in the most disastrous collapses6. Here we present an original design approach to arrest collapse propagation after major initial failures. When a collapse initiates, the approach ensures that specific elements fail before the failure of the most critical components for global stability. The structural system thus separates into different parts and isolates collapse when its propagation would otherwise be inevitable. The effectiveness of the approach is proved through unique experimental tests on a purposely built full-scale building. We also demonstrate that large initial failures would lead to total collapse of the test building if increased connectivity was implemented as recommended by present guidelines. Our proposed approach enables incorporating a last line of defence for more resilient buildings.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-024-07268-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07268-5

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-07268-5

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07268-5