EconPapers    
Economics at your fingertips  
 

Probing entanglement in a 2D hard-core Bose–Hubbard lattice

Amir H. Karamlou (), Ilan T. Rosen, Sarah E. Muschinske, Cora N. Barrett, Agustin Di Paolo, Leon Ding, Patrick M. Harrington, Max Hays, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Simon Gustavsson, Yariv Yanay, Jeffrey A. Grover and William D. Oliver ()
Additional contact information
Amir H. Karamlou: Massachusetts Institute of Technology
Ilan T. Rosen: Massachusetts Institute of Technology
Sarah E. Muschinske: Massachusetts Institute of Technology
Cora N. Barrett: Massachusetts Institute of Technology
Agustin Di Paolo: Massachusetts Institute of Technology
Leon Ding: Massachusetts Institute of Technology
Patrick M. Harrington: Massachusetts Institute of Technology
Max Hays: Massachusetts Institute of Technology
Rabindra Das: MIT Lincoln Laboratory
David K. Kim: MIT Lincoln Laboratory
Bethany M. Niedzielski: MIT Lincoln Laboratory
Meghan Schuldt: MIT Lincoln Laboratory
Kyle Serniak: Massachusetts Institute of Technology
Mollie E. Schwartz: MIT Lincoln Laboratory
Jonilyn L. Yoder: MIT Lincoln Laboratory
Simon Gustavsson: Massachusetts Institute of Technology
Yariv Yanay: Laboratory for Physical Sciences
Jeffrey A. Grover: Massachusetts Institute of Technology
William D. Oliver: Massachusetts Institute of Technology

Nature, 2024, vol. 629, issue 8012, 561-566

Abstract: Abstract Entanglement and its propagation are central to understanding many physical properties of quantum systems1–3. Notably, within closed quantum many-body systems, entanglement is believed to yield emergent thermodynamic behaviour4–7. However, a universal understanding remains challenging owing to the non-integrability and computational intractability of most large-scale quantum systems. Quantum hardware platforms provide a means to study the formation and scaling of entanglement in interacting many-body systems8–14. Here we use a controllable 4 × 4 array of superconducting qubits to emulate a 2D hard-core Bose–Hubbard (HCBH) lattice. We generate superposition states by simultaneously driving all lattice sites and extract correlation lengths and entanglement entropy across its many-body energy spectrum. We observe volume-law entanglement scaling for states at the centre of the spectrum and a crossover to the onset of area-law scaling near its edges.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-024-07325-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07325-z

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-07325-z

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07325-z