Quantum control of a cat qubit with bit-flip times exceeding ten seconds
U. Réglade,
A. Bocquet,
R. Gautier,
J. Cohen,
A. Marquet,
E. Albertinale,
N. Pankratova,
M. Hallén,
F. Rautschke,
L.-A. Sellem,
P. Rouchon,
A. Sarlette,
M. Mirrahimi,
P. Campagne-Ibarcq,
R. Lescanne,
S. Jezouin and
Z. Leghtas ()
Additional contact information
U. Réglade: Alice & Bob
A. Bocquet: Alice & Bob
R. Gautier: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
J. Cohen: Alice & Bob
A. Marquet: Alice & Bob
E. Albertinale: Alice & Bob
N. Pankratova: Alice & Bob
M. Hallén: Alice & Bob
F. Rautschke: Alice & Bob
L.-A. Sellem: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
P. Rouchon: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
A. Sarlette: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
M. Mirrahimi: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
P. Campagne-Ibarcq: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
R. Lescanne: Alice & Bob
S. Jezouin: Alice & Bob
Z. Leghtas: ENS-PSL, CNRS, Sorbonne Université, Université Paris Cité, Centre Automatique et Systèmes, Mines Paris, Université PSL, Inria
Nature, 2024, vol. 629, issue 8013, 778-783
Abstract:
Abstract Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads1. One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced2–7. However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered5,8. A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07294-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:629:y:2024:i:8013:d:10.1038_s41586-024-07294-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07294-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().