Electric recycling of Portland cement at scale
Cyrille F. Dunant (),
Shiju Joseph,
Rohit Prajapati and
Julian M. Allwood ()
Additional contact information
Cyrille F. Dunant: University of Cambridge
Shiju Joseph: University of Cambridge
Rohit Prajapati: University of Cambridge
Julian M. Allwood: University of Cambridge
Nature, 2024, vol. 629, issue 8014, 1055-1061
Abstract:
Abstract Cement production causes 7.5% of global anthropogenic CO2 emissions, arising from limestone decarbonation and fossil-fuel combustion1–3. Current decarbonation strategies include substituting Portland clinker with supplementary materials, but these mainly arise in emitting processes, developing alternative binders but none yet promises scale, or adopting carbon capture and storage that still releases some emissions4–8. However, used cement is potentially an abundant, decarbonated feedstock. Here we show that recovered cement paste can be reclinkered if used as a partial substitute for the lime–dolomite flux used in steel recycling nowadays. The resulting slag can meet existing specifications for Portland clinker and can be blended effectively with calcined clay and limestone. The process is sensitive to the silica content of the recovered cement paste, and silica and alumina that may come from the scrap, but this can be adjusted easily. We show that the proposed process may be economically competitive, and if powered by emissions-free electricity, can lead to zero emissions cement while also reducing the emissions of steel recycling by reducing lime flux requirements. The global supply of scrap steel for recycling may treble by 2050, and it is likely that more slag can be made per unit of steel recycled. With material efficiency in construction9,10, future global cement requirements could be met by this route.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07338-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:629:y:2024:i:8014:d:10.1038_s41586-024-07338-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07338-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().