EconPapers    
Economics at your fingertips  
 

Jurassic fossil juvenile reveals prolonged life history in early mammals

Elsa Panciroli (), Roger B. J. Benson, Vincent Fernandez, Nicholas C. Fraser, Matt Humpage, Zhe-Xi Luo, Elis Newham and Stig Walsh
Additional contact information
Elsa Panciroli: National Museums Scotland
Roger B. J. Benson: American Museum of Natural History
Vincent Fernandez: European Synchrotron Radiation Facility
Nicholas C. Fraser: National Museums Scotland
Matt Humpage: Northern Rogue Studios
Zhe-Xi Luo: University of Chicago
Elis Newham: Queen Mary University of London
Stig Walsh: National Museums Scotland

Nature, 2024, vol. 632, issue 8026, 815-822

Abstract: Abstract Living mammal groups exhibit rapid juvenile growth with a cessation of growth in adulthood1. Understanding the emergence of this pattern in the earliest mammaliaforms (mammals and their closest extinct relatives) is hindered by a paucity of fossils representing juvenile individuals. We report exceptionally complete juvenile and adult specimens of the Middle Jurassic docodontan Krusatodon, providing anatomical data and insights into the life history of early diverging mammaliaforms. We used synchrotron X-ray micro-computed tomography imaging of cementum growth increments in the teeth2–4 to provide evidence of pace of life in a Mesozoic mammaliaform. The adult was about 7 years and the juvenile 7 to 24 months of age at death and in the process of replacing its deciduous dentition with its final, adult generation. When analysed against a dataset of life history parameters for extant mammals5, the relative sequence of adult tooth eruption was already established in Krusatodon and in the range observed in extant mammals but this development was prolonged, taking place during a longer period as part of a significantly longer maximum lifespan than extant mammals of comparable adult body mass (156 g or less). Our findings suggest that early diverging mammaliaforms did not experience the same life histories as extant small-bodied mammals and the fundamental shift to faster growth over a shorter lifespan may not have taken place in mammaliaforms until during or after the Middle Jurassic.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-024-07733-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:632:y:2024:i:8026:d:10.1038_s41586-024-07733-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-07733-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:632:y:2024:i:8026:d:10.1038_s41586-024-07733-1