Space radiation measurements during the Artemis I lunar mission
Stuart P. George (),
Ramona Gaza,
Daniel Matthiä,
Diego Laramore,
Jussi Lehti,
Thomas Campbell-Ricketts,
Martin Kroupa,
Nicholas Stoffle,
Karel Marsalek,
Bartos Przybyla,
Mena Abdelmelek,
Joachim Aeckerlein,
Amir A. Bahadori,
Janet Barzilla,
Matthias Dieckmann,
Michael Ecord,
Ricky Egeland,
Timo Eronen,
Dan Fry,
Bailey H. Jones,
Christine E. Hellweg,
Jordan Houri,
Robert Hirsh,
Mika Hirvonen,
Scott Hovland,
Hesham Hussein,
A. Steve Johnson,
Moritz Kasemann,
Kerry Lee,
Martin Leitgab,
Catherine McLeod,
Oren Milstein,
Lawrence Pinsky,
Phillip Quinn,
Esa Riihonen,
Markus Rohde,
Sergiy Rozhdestvenskyy,
Jouni Saari,
Aaron Schram,
Ulrich Straube,
Daniel Turecek,
Pasi Virtanen,
Gideon Waterman,
Scott Wheeler,
Kathryn Whitman,
Michael Wirtz,
Madelyn Vandewalle,
Cary Zeitlin,
Edward Semones and
Thomas Berger ()
Additional contact information
Stuart P. George: Johnson Space Center
Ramona Gaza: Johnson Space Center
Daniel Matthiä: German Aerospace Center (DLR)
Diego Laramore: Johnson Space Center
Jussi Lehti: Aboa Space Research Oy (ASRO)
Thomas Campbell-Ricketts: Johnson Space Center
Martin Kroupa: Johnson Space Center
Nicholas Stoffle: Johnson Space Center
Karel Marsalek: German Aerospace Center (DLR)
Bartos Przybyla: German Aerospace Center (DLR)
Mena Abdelmelek: Johnson Space Center
Joachim Aeckerlein: German Aerospace Center (DLR)
Amir A. Bahadori: Johnson Space Center
Janet Barzilla: Johnson Space Center
Matthias Dieckmann: European Space Agency (ESA)
Michael Ecord: Johnson Space Center
Ricky Egeland: Johnson Space Center
Timo Eronen: Aboa Space Research Oy (ASRO)
Dan Fry: Johnson Space Center
Bailey H. Jones: Oceaneering Space Systems
Christine E. Hellweg: German Aerospace Center (DLR)
Jordan Houri: StemRad Inc.
Robert Hirsh: Leidos
Mika Hirvonen: Aboa Space Research Oy (ASRO)
Scott Hovland: European Space Agency (ESA)
Hesham Hussein: Lockheed Martin Space
A. Steve Johnson: Johnson Space Center
Moritz Kasemann: German Aerospace Center (DLR)
Kerry Lee: Johnson Space Center
Martin Leitgab: Johnson Space Center
Catherine McLeod: Johnson Space Center
Oren Milstein: StemRad Ltd.
Lawrence Pinsky: University of Houston
Phillip Quinn: Johnson Space Center
Esa Riihonen: Aboa Space Research Oy (ASRO)
Markus Rohde: German Aerospace Center (DLR)
Sergiy Rozhdestvenskyy: Johnson Space Center
Jouni Saari: Aboa Space Research Oy (ASRO)
Aaron Schram: CACI
Ulrich Straube: European Space Agency (ESA)
Daniel Turecek: Johnson Space Center
Pasi Virtanen: Aboa Space Research Oy (ASRO)
Gideon Waterman: StemRad Ltd.
Scott Wheeler: National Aeronautics and Space Administration (NASA)
Kathryn Whitman: Johnson Space Center
Michael Wirtz: German Aerospace Center (DLR)
Madelyn Vandewalle: National Aeronautics and Space Administration (NASA)
Cary Zeitlin: Johnson Space Center
Edward Semones: Johnson Space Center
Thomas Berger: German Aerospace Center (DLR)
Nature, 2024, vol. 634, issue 8032, 48-52
Abstract:
Abstract Space radiation is a notable hazard for long-duration human spaceflight1. Associated risks include cancer, cataracts, degenerative diseases2 and tissue reactions from large, acute exposures3. Space radiation originates from diverse sources, including galactic cosmic rays4, trapped-particle (Van Allen) belts5 and solar-particle events6. Previous radiation data are from the International Space Station and the Space Shuttle in low-Earth orbit protected by heavy shielding and Earth’s magnetic field7,8 and lightly shielded interplanetary robotic probes such as Mars Science Laboratory and Lunar Reconnaissance Orbiter9,10. Limited data from the Apollo missions11–13 and ground measurements with substantial caveats are also available14. Here we report radiation measurements from the heavily shielded Orion spacecraft on the uncrewed Artemis I lunar mission. At differing shielding locations inside the vehicle, a fourfold difference in dose rates was observed during proton-belt passes that are similar to large, reference solar-particle events. Interplanetary cosmic-ray dose equivalent rates in Orion were as much as 60% lower than previous observations9. Furthermore, a change in orientation of the spacecraft during the proton-belt transit resulted in a reduction of radiation dose rates of around 50%. These measurements validate the Orion for future crewed exploration and inform future human spaceflight mission design.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-07927-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:634:y:2024:i:8032:d:10.1038_s41586-024-07927-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-07927-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().