The cool brown dwarf Gliese 229 B is a close binary
Jerry W. Xuan (),
A. Mérand,
W. Thompson,
Y. Zhang,
S. Lacour,
D. Blakely,
D. Mawet,
R. Oppenheimer,
J. Kammerer,
K. Batygin,
A. Sanghi,
J. Wang,
J.-B. Ruffio,
M. C. Liu,
H. Knutson,
W. Brandner,
A. Burgasser,
E. Rickman,
R. Bowens-Rubin,
M. Salama,
W. Balmer,
S. Blunt,
G. Bourdarot,
P. Caselli,
G. Chauvin,
R. Davies,
A. Drescher,
A. Eckart,
F. Eisenhauer,
M. Fabricius,
H. Feuchtgruber,
G. Finger,
N. M. Förster Schreiber,
P. Garcia,
R. Genzel,
S. Gillessen,
S. Grant,
M. Hartl,
F. Haußmann,
T. Henning,
S. Hinkley,
S. F. Hönig,
M. Horrobin,
M. Houllé,
M. Janson,
P. Kervella,
Q. Kral,
L. Kreidberg,
J.-B. Bouquin,
D. Lutz,
F. Mang,
G.-D. Marleau,
F. Millour,
N. More,
M. Nowak,
T. Ott,
G. Otten,
T. Paumard,
S. Rabien,
C. Rau,
D. C. Ribeiro,
M. Sadun Bordoni,
J. Sauter,
J. Shangguan,
T. T. Shimizu,
C. Sykes,
A. Soulain,
S. Spezzano,
C. Straubmeier,
T. Stolker,
E. Sturm,
M. Subroweit,
L. J. Tacconi,
E. F. Dishoeck,
A. Vigan,
F. Widmann,
E. Wieprecht,
T. O. Winterhalder and
J. Woillez
Additional contact information
Jerry W. Xuan: California Institute of Technology
A. Mérand: European Southern Observatory
W. Thompson: University of Victoria
Y. Zhang: California Institute of Technology
S. Lacour: European Southern Observatory
D. Blakely: University of Victoria
D. Mawet: California Institute of Technology
R. Oppenheimer: American Museum of Natural History
J. Kammerer: European Southern Observatory
K. Batygin: California Institute of Technology
A. Sanghi: California Institute of Technology
J. Wang: Northwestern University
J.-B. Ruffio: University of California, San Diego
M. C. Liu: University of Hawai‘i
H. Knutson: California Institute of Technology
W. Brandner: Max-Planck-Institut für Astronomie
A. Burgasser: University of California, San Diego
E. Rickman: Space Telescope Science Institute
R. Bowens-Rubin: University of California, Santa Cruz
M. Salama: University of California, Santa Cruz
W. Balmer: Johns Hopkins University
S. Blunt: Northwestern University
G. Bourdarot: Max Planck Institute for Extraterrestrial Physics
P. Caselli: Max Planck Institute for Extraterrestrial Physics
G. Chauvin: Université Côte d’Azur, CNRS
R. Davies: Max Planck Institute for Extraterrestrial Physics
A. Drescher: Max Planck Institute for Extraterrestrial Physics
A. Eckart: University of Cologne
F. Eisenhauer: Max Planck Institute for Extraterrestrial Physics
M. Fabricius: Max Planck Institute for Extraterrestrial Physics
H. Feuchtgruber: Max Planck Institute for Extraterrestrial Physics
G. Finger: Max Planck Institute for Extraterrestrial Physics
N. M. Förster Schreiber: Max Planck Institute for Extraterrestrial Physics
P. Garcia: Universidade do Porto
R. Genzel: Max Planck Institute for Extraterrestrial Physics
S. Gillessen: Max Planck Institute for Extraterrestrial Physics
S. Grant: Max Planck Institute for Extraterrestrial Physics
M. Hartl: Max Planck Institute for Extraterrestrial Physics
F. Haußmann: Max Planck Institute for Extraterrestrial Physics
T. Henning: Max-Planck-Institut für Astronomie
S. Hinkley: University of Exeter
S. F. Hönig: University of Southampton
M. Horrobin: University of Cologne
M. Houllé: Université Côte d’Azur, CNRS
M. Janson: Stockholm University
P. Kervella: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Q. Kral: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité
L. Kreidberg: Max-Planck-Institut für Astronomie
J.-B. Bouquin: Université Grenoble Alpes, CNRS, IPAG
D. Lutz: Max Planck Institute for Extraterrestrial Physics
F. Mang: Max Planck Institute for Extraterrestrial Physics
G.-D. Marleau: Max-Planck-Institut für Astronomie
F. Millour: Université Côte d’Azur, CNRS
N. More: Max Planck Institute for Extraterrestrial Physics
M. Nowak: University of Cambridge
T. Ott: Max Planck Institute for Extraterrestrial Physics
G. Otten: Academia Sinica
T. Paumard: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité
S. Rabien: Max Planck Institute for Extraterrestrial Physics
C. Rau: Max Planck Institute for Extraterrestrial Physics
D. C. Ribeiro: Max Planck Institute for Extraterrestrial Physics
M. Sadun Bordoni: Max Planck Institute for Extraterrestrial Physics
J. Sauter: Max-Planck-Institut für Astronomie
J. Shangguan: Max Planck Institute for Extraterrestrial Physics
T. T. Shimizu: Max Planck Institute for Extraterrestrial Physics
C. Sykes: University of Southampton
A. Soulain: Université Grenoble Alpes, CNRS, IPAG
S. Spezzano: Max Planck Institute for Extraterrestrial Physics
C. Straubmeier: University of Cologne
T. Stolker: Leiden University
E. Sturm: Max Planck Institute for Extraterrestrial Physics
M. Subroweit: University of Cologne
L. J. Tacconi: Max Planck Institute for Extraterrestrial Physics
E. F. Dishoeck: Max Planck Institute for Extraterrestrial Physics
A. Vigan: Aix-Marseille Université, CNRS, CNES, LAM
F. Widmann: Max Planck Institute for Extraterrestrial Physics
E. Wieprecht: Max Planck Institute for Extraterrestrial Physics
T. O. Winterhalder: European Southern Observatory
J. Woillez: European Southern Observatory
Nature, 2024, vol. 634, issue 8036, 1070-1074
Abstract:
Abstract Owing to their similarities with giant exoplanets, brown dwarf companions of stars provide insights into the fundamental processes of planet formation and evolution. From their orbits, several brown dwarf companions are found to be more massive than theoretical predictions given their luminosities and the ages of their host stars1–3. Either the theory is incomplete or these objects are not single entities. For example, they could be two brown dwarfs each with a lower mass and intrinsic luminosity1,4. The most problematic example is Gliese 229 B (refs. 5,6), which is at least 2–6 times less luminous than model predictions given its dynamical mass of 71.4 ± 0.6 Jupiter masses (MJup) (ref. 1). We observed Gliese 229 B with the GRAVITY interferometer and, separately, the CRIRES+ spectrograph at the Very Large Telescope. Both sets of observations independently resolve Gliese 229 B into two components, Gliese 229 Ba and Bb, settling the conflict between theory and observations. The two objects have a flux ratio of 0.47 ± 0.03 at a wavelength of 2 μm and masses of 38.1 ± 1.0 and 34.4 ± 1.5 MJup, respectively. They orbit each other every 12.1 days with a semimajor axis of 0.042 astronomical units (au). The discovery of Gliese 229 BaBb, each only a few times more massive than the most massive planets, and separated by 16 times the Earth–moon distance, raises new questions about the formation and prevalence of tight binary brown dwarfs around stars.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-08064-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:634:y:2024:i:8036:d:10.1038_s41586-024-08064-x
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-08064-x
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().