Thermalization and criticality on an analogue–digital quantum simulator
T. I. Andersen (),
N. Astrakhantsev,
A. H. Karamlou,
J. Berndtsson,
J. Motruk,
A. Szasz,
J. A. Gross,
A. Schuckert,
T. Westerhout,
Y. Zhang,
E. Forati,
D. Rossi,
B. Kobrin,
A. Di Paolo,
A. R. Klots,
I. Drozdov,
V. Kurilovich,
A. Petukhov,
L. B. Ioffe,
A. Elben,
A. Rath,
V. Vitale,
B. Vermersch,
R. Acharya,
L. A. Beni,
K. Anderson,
M. Ansmann,
F. Arute,
K. Arya,
A. Asfaw,
J. Atalaya,
B. Ballard,
J. C. Bardin,
A. Bengtsson,
A. Bilmes,
G. Bortoli,
A. Bourassa,
J. Bovaird,
L. Brill,
M. Broughton,
D. A. Browne,
B. Buchea,
B. B. Buckley,
D. A. Buell,
T. Burger,
B. Burkett,
N. Bushnell,
A. Cabrera,
J. Campero,
H.-S. Chang,
Z. Chen,
B. Chiaro,
J. Claes,
A. Y. Cleland,
J. Cogan,
R. Collins,
P. Conner,
W. Courtney,
A. L. Crook,
S. Das,
D. M. Debroy,
L. De Lorenzo,
A. Del Toro Barba,
S. Demura,
P. Donohoe,
A. Dunsworth,
C. Earle,
A. Eickbusch,
A. M. Elbag,
M. Elzouka,
C. Erickson,
L. Faoro,
R. Fatemi,
V. S. Ferreira,
L. Flores Burgos,
A. G. Fowler,
B. Foxen,
S. Ganjam,
R. Gasca,
W. Giang,
C. Gidney,
D. Gilboa,
M. Giustina,
R. Gosula,
A. Grajales Dau,
D. Graumann,
A. Greene,
S. Habegger,
M. C. Hamilton,
M. Hansen,
M. P. Harrigan,
S. D. Harrington,
S. Heslin,
P. Heu,
G. Hill,
M. R. Hoffmann,
H.-Y. Huang,
T. Huang,
A. Huff,
W. J. Huggins,
S. V. Isakov,
E. Jeffrey,
Z. Jiang,
C. Jones,
S. Jordan,
C. Joshi,
P. Juhas,
D. Kafri,
H. Kang,
K. Kechedzhi,
T. Khaire,
T. Khattar,
M. Khezri,
M. Kieferová,
S. Kim,
A. Kitaev,
P. Klimov,
A. N. Korotkov,
F. Kostritsa,
J. M. Kreikebaum,
D. Landhuis,
B. W. Langley,
P. Laptev,
K.-M. Lau,
L. Le Guevel,
J. Ledford,
J. Lee,
K. W. Lee,
Y. D. Lensky,
B. J. Lester,
W. Y. Li,
A. T. Lill,
W. Liu,
W. P. Livingston,
A. Locharla,
D. Lundahl,
A. Lunt,
S. Madhuk,
A. Maloney,
S. Mandrà,
L. S. Martin,
O. Martin,
S. Martin,
C. Maxfield,
J. R. McClean,
M. McEwen,
S. Meeks,
K. C. Miao,
A. Mieszala,
S. Molina,
S. Montazeri,
A. Morvan,
R. Movassagh,
C. Neill,
A. Nersisyan,
M. Newman,
A. Nguyen,
M. Nguyen,
C.-H. Ni,
M. Y. Niu,
W. D. Oliver,
K. Ottosson,
A. Pizzuto,
R. Potter,
O. Pritchard,
L. P. Pryadko,
C. Quintana,
M. J. Reagor,
D. M. Rhodes,
G. Roberts,
C. Rocque,
E. Rosenberg,
N. C. Rubin,
N. Saei,
K. Sankaragomathi,
K. J. Satzinger,
H. F. Schurkus,
C. Schuster,
M. J. Shearn,
A. Shorter,
N. Shutty,
V. Shvarts,
V. Sivak,
J. Skruzny,
S. Small,
W. Clarke Smith,
S. Springer,
G. Sterling,
J. Suchard,
M. Szalay,
A. Sztein,
D. Thor,
A. Torres,
M. M. Torunbalci,
A. Vaishnav,
S. Vdovichev,
B. Villalonga,
C. Vollgraff Heidweiller,
S. Waltman,
S. X. Wang,
T. White,
K. Wong,
B. W. K. Woo,
C. Xing,
Z. Jamie Yao,
P. Yeh,
B. Ying,
J. Yoo,
N. Yosri,
G. Young,
A. Zalcman,
N. Zhu,
N. Zobrist,
H. Neven,
R. Babbush,
S. Boixo,
J. Hilton,
E. Lucero,
A. Megrant,
J. Kelly,
Y. Chen,
V. Smelyanskiy,
G. Vidal,
P. Roushan,
A. M. Läuchli,
D. A. Abanin () and
X. Mi ()
Additional contact information
T. I. Andersen: Google Research
N. Astrakhantsev: Google Research
A. H. Karamlou: Google Research
J. Berndtsson: Google Research
J. Motruk: University of Geneva
A. Szasz: Google Research
J. A. Gross: Google Research
A. Schuckert: NIST/University of Maryland
T. Westerhout: Radboud University
Y. Zhang: Google Research
E. Forati: Google Research
D. Rossi: University of Geneva
B. Kobrin: Google Research
A. Di Paolo: Google Research
A. R. Klots: Google Research
I. Drozdov: Google Research
V. Kurilovich: Google Research
A. Petukhov: Google Research
L. B. Ioffe: Google Research
A. Elben: Caltech
A. Rath: LPMMC
V. Vitale: LPMMC
B. Vermersch: LPMMC
R. Acharya: Google Research
L. A. Beni: Google Research
K. Anderson: Google Research
M. Ansmann: Google Research
F. Arute: Google Research
K. Arya: Google Research
A. Asfaw: Google Research
J. Atalaya: Google Research
B. Ballard: Google Research
J. C. Bardin: Google Research
A. Bengtsson: Google Research
A. Bilmes: Google Research
G. Bortoli: Google Research
A. Bourassa: Google Research
J. Bovaird: Google Research
L. Brill: Google Research
M. Broughton: Google Research
D. A. Browne: Google Research
B. Buchea: Google Research
B. B. Buckley: Google Research
D. A. Buell: Google Research
T. Burger: Google Research
B. Burkett: Google Research
N. Bushnell: Google Research
A. Cabrera: Google Research
J. Campero: Google Research
H.-S. Chang: Google Research
Z. Chen: Google Research
B. Chiaro: Google Research
J. Claes: Google Research
A. Y. Cleland: Google Research
J. Cogan: Google Research
R. Collins: Google Research
P. Conner: Google Research
W. Courtney: Google Research
A. L. Crook: Google Research
S. Das: Google Research
D. M. Debroy: Google Research
L. De Lorenzo: Google Research
A. Del Toro Barba: Google Research
S. Demura: Google Research
P. Donohoe: Google Research
A. Dunsworth: Google Research
C. Earle: Google Research
A. Eickbusch: Google Research
A. M. Elbag: Google Research
M. Elzouka: Google Research
C. Erickson: Google Research
L. Faoro: Google Research
R. Fatemi: Google Research
V. S. Ferreira: Google Research
L. Flores Burgos: Google Research
A. G. Fowler: Google Research
B. Foxen: Google Research
S. Ganjam: Google Research
R. Gasca: Google Research
W. Giang: Google Research
C. Gidney: Google Research
D. Gilboa: Google Research
M. Giustina: Google Research
R. Gosula: Google Research
A. Grajales Dau: Google Research
D. Graumann: Google Research
A. Greene: Google Research
S. Habegger: Google Research
M. C. Hamilton: Google Research
M. Hansen: Google Research
M. P. Harrigan: Google Research
S. D. Harrington: Google Research
S. Heslin: Google Research
P. Heu: Google Research
G. Hill: Google Research
M. R. Hoffmann: Google Research
H.-Y. Huang: Google Research
T. Huang: Google Research
A. Huff: Google Research
W. J. Huggins: Google Research
S. V. Isakov: Google Research
E. Jeffrey: Google Research
Z. Jiang: Google Research
C. Jones: Google Research
S. Jordan: Google Research
C. Joshi: Google Research
P. Juhas: Google Research
D. Kafri: Google Research
H. Kang: Google Research
K. Kechedzhi: Google Research
T. Khaire: Google Research
T. Khattar: Google Research
M. Khezri: Google Research
M. Kieferová: Google Research
S. Kim: Google Research
A. Kitaev: Google Research
P. Klimov: Google Research
A. N. Korotkov: Google Research
F. Kostritsa: Google Research
J. M. Kreikebaum: Google Research
D. Landhuis: Google Research
B. W. Langley: Google Research
P. Laptev: Google Research
K.-M. Lau: Google Research
L. Le Guevel: Google Research
J. Ledford: Google Research
J. Lee: Google Research
K. W. Lee: Google Research
Y. D. Lensky: Google Research
B. J. Lester: Google Research
W. Y. Li: Google Research
A. T. Lill: Google Research
W. Liu: Google Research
W. P. Livingston: Google Research
A. Locharla: Google Research
D. Lundahl: Google Research
A. Lunt: Google Research
S. Madhuk: Google Research
A. Maloney: Google Research
S. Mandrà: Google Research
L. S. Martin: Google Research
O. Martin: Google Research
S. Martin: Google Research
C. Maxfield: Google Research
J. R. McClean: Google Research
M. McEwen: Google Research
S. Meeks: Google Research
K. C. Miao: Google Research
A. Mieszala: Google Research
S. Molina: Google Research
S. Montazeri: Google Research
A. Morvan: Google Research
R. Movassagh: Google Research
C. Neill: Google Research
A. Nersisyan: Google Research
M. Newman: Google Research
A. Nguyen: Google Research
M. Nguyen: Google Research
C.-H. Ni: Google Research
M. Y. Niu: Google Research
W. D. Oliver: Google Research
K. Ottosson: Google Research
A. Pizzuto: Google Research
R. Potter: Google Research
O. Pritchard: Google Research
L. P. Pryadko: Google Research
C. Quintana: Google Research
M. J. Reagor: Google Research
D. M. Rhodes: Google Research
G. Roberts: Google Research
C. Rocque: Google Research
E. Rosenberg: Google Research
N. C. Rubin: Google Research
N. Saei: Google Research
K. Sankaragomathi: Google Research
K. J. Satzinger: Google Research
H. F. Schurkus: Google Research
C. Schuster: Google Research
M. J. Shearn: Google Research
A. Shorter: Google Research
N. Shutty: Google Research
V. Shvarts: Google Research
V. Sivak: Google Research
J. Skruzny: Google Research
S. Small: Google Research
W. Clarke Smith: Google Research
S. Springer: Google Research
G. Sterling: Google Research
J. Suchard: Google Research
M. Szalay: Google Research
A. Sztein: Google Research
D. Thor: Google Research
A. Torres: Google Research
M. M. Torunbalci: Google Research
A. Vaishnav: Google Research
S. Vdovichev: Google Research
B. Villalonga: Google Research
C. Vollgraff Heidweiller: Google Research
S. Waltman: Google Research
S. X. Wang: Google Research
T. White: Google Research
K. Wong: Google Research
B. W. K. Woo: Google Research
C. Xing: Google Research
Z. Jamie Yao: Google Research
P. Yeh: Google Research
B. Ying: Google Research
J. Yoo: Google Research
N. Yosri: Google Research
G. Young: Google Research
A. Zalcman: Google Research
N. Zhu: Google Research
N. Zobrist: Google Research
H. Neven: Google Research
R. Babbush: Google Research
S. Boixo: Google Research
J. Hilton: Google Research
E. Lucero: Google Research
A. Megrant: Google Research
J. Kelly: Google Research
Y. Chen: Google Research
V. Smelyanskiy: Google Research
G. Vidal: Google Research
P. Roushan: Google Research
A. M. Läuchli: Paul Scherrer Institute
D. A. Abanin: Google Research
X. Mi: Google Research
Nature, 2025, vol. 638, issue 8049, 79-85
Abstract:
Abstract Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators1,2. Unlocking the full potential of such systems towards this goal requires flexible initial state preparation, precise time evolution and extensive probes for final state characterization. Here we present a quantum simulator comprising 69 superconducting qubits that supports both universal quantum gates and high-fidelity analogue evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. This hybrid platform features more versatile measurement capabilities compared with analogue-only simulators, which we leverage here to reveal a coarsening-induced breakdown of Kibble–Zurek scaling predictions3 in the XY model, as well as signatures of the classical Kosterlitz–Thouless phase transition4. Moreover, the digital gates enable precise energy control, allowing us to study the effects of the eigenstate thermalization hypothesis5–7 in targeted parts of the eigenspectrum. We also demonstrate digital preparation of pairwise-entangled dimer states, and image the transport of energy and vorticity during subsequent thermalization in analogue evolution. These results establish the efficacy of superconducting analogue–digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-08460-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:638:y:2025:i:8049:d:10.1038_s41586-024-08460-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-08460-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().