EconPapers    
Economics at your fingertips  
 

Scaling and networking a modular photonic quantum computer

H. Aghaee Rad, T. Ainsworth, R. N. Alexander (), B. Altieri, M. F. Askarani, R. Baby, L. Banchi, B. Q. Baragiola, J. E. Bourassa, R. S. Chadwick, I. Charania, H. Chen, M. J. Collins, P. Contu, N. D’Arcy, G. Dauphinais, R. Prins, D. Deschenes, I. Luch, S. Duque, P. Edke, S. E. Fayer, S. Ferracin, H. Ferretti, J. Gefaell, S. Glancy, C. González-Arciniegas, T. Grainge, Z. Han, J. Hastrup, L. G. Helt, T. Hillmann, J. Hundal, S. Izumi, T. Jaeken, M. Jonas, S. Kocsis, I. Krasnokutska, M. V. Larsen, P. Laskowski, F. Laudenbach, J. Lavoie (), M. Li, E. Lomonte, C. E. Lopetegui, B. Luey, A. P. Lund, C. Ma, L. S. Madsen, D. H. Mahler, L. Mantilla Calderón, M. Menotti, F. M. Miatto, B. Morrison, P. J. Nadkarni, T. Nakamura, L. Neuhaus, Z. Niu, R. Noro, K. Papirov, A. Pesah, D. S. Phillips, W. N. Plick, T. Rogalsky, F. Rortais, J. Sabines-Chesterking, S. Safavi-Bayat, E. Sazhaev, M. Seymour, K. Rezaei Shad, M. Silverman, S. A. Srinivasan, M. Stephan, Q. Y. Tang, J. F. Tasker, Y. S. Teo, R. B. Then, J. E. Tremblay, I. Tzitrin, V. D. Vaidya, M. Vasmer, Z. Vernon, L. F. S. S. M. Villalobos, B. W. Walshe, R. Weil, X. Xin, X. Yan, Y. Yao, M. Zamani Abnili and Y. Zhang
Additional contact information
H. Aghaee Rad: Xanadu Quantum Technologies Inc.
T. Ainsworth: Xanadu Quantum Technologies Inc.
R. N. Alexander: Xanadu Quantum Technologies Inc.
B. Altieri: Xanadu Quantum Technologies Inc.
M. F. Askarani: Xanadu Quantum Technologies Inc.
R. Baby: Xanadu Quantum Technologies Inc.
L. Banchi: Xanadu Quantum Technologies Inc.
B. Q. Baragiola: Xanadu Quantum Technologies Inc.
J. E. Bourassa: Xanadu Quantum Technologies Inc.
R. S. Chadwick: Xanadu Quantum Technologies Inc.
I. Charania: Xanadu Quantum Technologies Inc.
H. Chen: Xanadu Quantum Technologies Inc.
M. J. Collins: Xanadu Quantum Technologies Inc.
P. Contu: Xanadu Quantum Technologies Inc.
N. D’Arcy: Xanadu Quantum Technologies Inc.
G. Dauphinais: Xanadu Quantum Technologies Inc.
R. Prins: Xanadu Quantum Technologies Inc.
D. Deschenes: Xanadu Quantum Technologies Inc.
I. Luch: Xanadu Quantum Technologies Inc.
S. Duque: Xanadu Quantum Technologies Inc.
P. Edke: Xanadu Quantum Technologies Inc.
S. E. Fayer: Xanadu Quantum Technologies Inc.
S. Ferracin: Xanadu Quantum Technologies Inc.
H. Ferretti: Xanadu Quantum Technologies Inc.
J. Gefaell: Xanadu Quantum Technologies Inc.
S. Glancy: Xanadu Quantum Technologies Inc.
C. González-Arciniegas: Xanadu Quantum Technologies Inc.
T. Grainge: Xanadu Quantum Technologies Inc.
Z. Han: Xanadu Quantum Technologies Inc.
J. Hastrup: Xanadu Quantum Technologies Inc.
L. G. Helt: Xanadu Quantum Technologies Inc.
T. Hillmann: Xanadu Quantum Technologies Inc.
J. Hundal: Xanadu Quantum Technologies Inc.
S. Izumi: Xanadu Quantum Technologies Inc.
T. Jaeken: Xanadu Quantum Technologies Inc.
M. Jonas: Xanadu Quantum Technologies Inc.
S. Kocsis: Xanadu Quantum Technologies Inc.
I. Krasnokutska: Xanadu Quantum Technologies Inc.
M. V. Larsen: Xanadu Quantum Technologies Inc.
P. Laskowski: Xanadu Quantum Technologies Inc.
F. Laudenbach: Xanadu Quantum Technologies Inc.
J. Lavoie: Xanadu Quantum Technologies Inc.
M. Li: Xanadu Quantum Technologies Inc.
E. Lomonte: Xanadu Quantum Technologies Inc.
C. E. Lopetegui: Xanadu Quantum Technologies Inc.
B. Luey: Xanadu Quantum Technologies Inc.
A. P. Lund: Xanadu Quantum Technologies Inc.
C. Ma: Xanadu Quantum Technologies Inc.
L. S. Madsen: Xanadu Quantum Technologies Inc.
D. H. Mahler: Xanadu Quantum Technologies Inc.
L. Mantilla Calderón: Xanadu Quantum Technologies Inc.
M. Menotti: Xanadu Quantum Technologies Inc.
F. M. Miatto: Xanadu Quantum Technologies Inc.
B. Morrison: Xanadu Quantum Technologies Inc.
P. J. Nadkarni: Xanadu Quantum Technologies Inc.
T. Nakamura: Xanadu Quantum Technologies Inc.
L. Neuhaus: Xanadu Quantum Technologies Inc.
Z. Niu: Xanadu Quantum Technologies Inc.
R. Noro: Xanadu Quantum Technologies Inc.
K. Papirov: Xanadu Quantum Technologies Inc.
A. Pesah: Xanadu Quantum Technologies Inc.
D. S. Phillips: Xanadu Quantum Technologies Inc.
W. N. Plick: Xanadu Quantum Technologies Inc.
T. Rogalsky: Xanadu Quantum Technologies Inc.
F. Rortais: Xanadu Quantum Technologies Inc.
J. Sabines-Chesterking: Xanadu Quantum Technologies Inc.
S. Safavi-Bayat: Xanadu Quantum Technologies Inc.
E. Sazhaev: Xanadu Quantum Technologies Inc.
M. Seymour: Xanadu Quantum Technologies Inc.
K. Rezaei Shad: Xanadu Quantum Technologies Inc.
M. Silverman: Xanadu Quantum Technologies Inc.
S. A. Srinivasan: Xanadu Quantum Technologies Inc.
M. Stephan: Xanadu Quantum Technologies Inc.
Q. Y. Tang: Xanadu Quantum Technologies Inc.
J. F. Tasker: Xanadu Quantum Technologies Inc.
Y. S. Teo: Xanadu Quantum Technologies Inc.
R. B. Then: Xanadu Quantum Technologies Inc.
J. E. Tremblay: Xanadu Quantum Technologies Inc.
I. Tzitrin: Xanadu Quantum Technologies Inc.
V. D. Vaidya: Xanadu Quantum Technologies Inc.
M. Vasmer: Xanadu Quantum Technologies Inc.
Z. Vernon: Xanadu Quantum Technologies Inc.
L. F. S. S. M. Villalobos: Xanadu Quantum Technologies Inc.
B. W. Walshe: Xanadu Quantum Technologies Inc.
R. Weil: Xanadu Quantum Technologies Inc.
X. Xin: Xanadu Quantum Technologies Inc.
X. Yan: Xanadu Quantum Technologies Inc.
Y. Yao: Xanadu Quantum Technologies Inc.
M. Zamani Abnili: Xanadu Quantum Technologies Inc.
Y. Zhang: Xanadu Quantum Technologies Inc.

Nature, 2025, vol. 638, issue 8052, 912-919

Abstract: Abstract Photonics offers a promising platform for quantum computing1–4, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation5. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility. This combines all the primitive components as discrete, scalable rack-deployed modules networked over fibre-optic interconnects, including 84 squeezers6 and 36 photon-number-resolving detectors furnishing 12 physical qubit modes at each clock cycle. We use this machine, which we name Aurora, to synthesize a cluster state7 entangled across separate chips with 86.4 billion modes, and demonstrate its capability of implementing the foliated distance-2 repetition code with real-time decoding. The key building blocks needed for universality and fault tolerance are demonstrated: heralded synthesis of single-temporal-mode non-Gaussian resource states, real-time multiplexing actuated on photon-number-resolving detection, spatiotemporal cluster-state formation with fibre buffers, and adaptive measurements implemented using chip-integrated homodyne detectors with real-time single-clock-cycle feedforward. We also present a detailed analysis of our architecture’s tolerances for optical loss, which is the dominant and most challenging hurdle to crossing the fault-tolerant threshold. This work lays out the path to cross the fault-tolerant threshold and scale photonic quantum computers to the point of addressing useful applications.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-024-08406-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:638:y:2025:i:8052:d:10.1038_s41586-024-08406-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-08406-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:638:y:2025:i:8052:d:10.1038_s41586-024-08406-9