EconPapers    
Economics at your fingertips  
 

Activation and inhibition mechanisms of a plant helper NLR

Yinyan Xiao, Xiaoxian Wu, Zaiqing Wang, Kexin Ji, Yang Zhao, Yu Zhang () and Li Wan ()
Additional contact information
Yinyan Xiao: Chinese Academy of Sciences
Xiaoxian Wu: Chinese Academy of Sciences
Zaiqing Wang: Chinese Academy of Sciences
Kexin Ji: Chinese Academy of Sciences
Yang Zhao: Chinese Academy of Sciences
Yu Zhang: Chinese Academy of Sciences
Li Wan: Chinese Academy of Sciences

Nature, 2025, vol. 639, issue 8054, 438-446

Abstract: Abstract Plant nucleotide-binding leucine-rich repeat (NLR) receptors sense pathogen effectors and form resistosomes to confer immunity1. Some sensor NLR resistosomes produce small molecules to induce formation of a heterotrimer complex with two lipase-like proteins, EDS1 and SAG101, and a helper NLR called NRG1 (refs. 2,3). Activation of sensor NLR resistosomes also triggers NRG1 oligomerization and resistosome formation at the plasma membrane4,5. We demonstrate that the Arabidopsis AtEDS1–AtSAG101–AtNRG1A heterotrimer formation is stabilized by the AtNRG1A loss-of-oligomerization mutant L134E5,6. We report structures of AtEDS1–AtSAG101–AtNRG1A L134E and AtEDS1–AtSAG101–AtNRG1C heterotrimers with similar assembly mechanisms. AtNRG1A signalling is activated by the interaction with the AtEDS1–AtSAG101 heterodimer in complex with their small-molecule ligand. The truncated AtNRG1C maintains core interacting domains of AtNRG1A but develops further interactions with AtEDS1–AtSAG101 to outcompete AtNRG1A. Moreover, AtNRG1C lacks an N-terminal signalling domain and shows nucleocytoplasmic localization, facilitating its sequestration of AtEDS1–AtSAG101, which is also nucleocytoplasmic. Our study shows the activation and inhibition mechanisms of a plant helper NLR.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-024-08517-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:639:y:2025:i:8054:d:10.1038_s41586-024-08517-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-08517-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:nat:nature:v:639:y:2025:i:8054:d:10.1038_s41586-024-08517-3